Emerging viruses in the Felidae: shifting paradigms.

Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
Viruses (Impact Factor: 2.51). 02/2012; 4(2):236-57. DOI: 10.3390/v4020236
Source: PubMed

ABSTRACT The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses.
    Emerging Infectious Diseases 07/2013; 19(7):1066-73. · 6.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytotoxic CD8+ T-cell immunosurveillance for intracellular pathogens, such as viruses, is controlled by classical major histocompatibility complex (MHC) class Ia molecules, and ideally, these antiviral T-cell populations are defined by the specific peptide and restricting MHC allele. Surprisingly, despite the utility of the cat in modeling human viral immunity, little is known about the feline leukocyte antigen class I complex (FLAI). Only a few coding sequences with uncertain locus origin and expression patterns have been reported. Of 19 class I genes, three loci-FLAI-E, FLAI-H, and FLAI-K-are predicted to encode classical molecules, and our objective was to evaluate their status by analyzing polymorphisms and tissue expression. Using locus-specific, PCR-based genotyping, we amplified 33 FLAI-E, FLAI-H, and FLAI-K alleles from 12 cats of various breeds, identifying, for the first time, alleles across three distinct loci in a feline species. Alleles shared the expected polymorphic and invariant sites in the α1/α2 domains, and full-length cDNA clones possessed all characteristic class Ia exons. Alleles could be assigned to a specific locus with reasonable confidence, although there was evidence of potentially confounding interlocus recombination between FLAI-E and FLAI-K. Only FLAI-E, FLAI-H, and FLAI-K origin alleles were amplified from cDNAs of multiple tissue types. We also defined hypervariable regions across these genes, which permitted the assignment of names to both novel and established alleles. As predicted, FLAI-E, FLAI-H, and FLAI-K fulfill the major criteria of class Ia genes. These data represent a necessary prerequisite for studying epitope-specific antiviral CD8+ T-cell responses in cats.
    Immunogenetics 06/2013; · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The feline immunodeficiency virus (FIV) shares genomic organization, receptor usage, lymphocyte tropism, and induction of immunodeficiency and increased susceptibility to cancer with the human immunodeficiency virus (HIV). Global distribution, marked heterogeneity and variable host adaptation are also properties of both viruses. These features render the FIV-cat model suitable to explore many aspects of lentivirus-host interaction and adaptation, and to explore treatment and prevention of infection. Examples of fundamental discoveries that have emerged from study in the FIV-cat model concern two-receptor entrance strategies that target memory T-lymphocytes, host factors that restrict retroviral infection, viral strategies for replication in non-dividing cells, and identification of correlates of immunity to the virus. This article provides a brief overview of strengths and limitations of the FIV-cat model for comparative biology and medicine.
    Veterinary Immunology and Immunopathology 01/2014; · 1.88 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014