Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance.

Institute of Life Sciences, Bhubaneswar, India.
PLoS ONE (Impact Factor: 3.53). 03/2012; 7(3):e32920. DOI: 10.1371/journal.pone.0032920
Source: PubMed

ABSTRACT Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP) is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR) by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs) surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined) and single or dual drug loaded nanoparticles (unconjugated/folate conjugated). The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs) over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFκB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Purpose: Curcumin (diferuloylmethane), a phenolic compound obtained from the rhizome of the herb Curcuma longa, is known to have anti-proliferative and anti-tumor properties. In this study, we evaluated the cytotoxic effect of curcumin alone and in combination with individual drugs like carboplatin, etoposide, or vincristine in a human retinoblastoma (RB) cancer cell line. Materials and methods: A drug-drug interaction was analyzed using the median effect/isobologram method and combination index values were used to characterize the interaction as synergistic or additive. We also performed the apoptosis and cell-cycle kinetics study with single drugs in combination with curcumin in a human RB cell lines (Y79 and Weri-Rb1). Results: Curcumin caused concentration-dependent decrease in cell proliferation, cell kinetics, and also induced apoptosis in both the RB cell lines. When combination of curcumin with individual drugs like carboplatin or etoposide or vincristine was treated on to RB cells, both cell viability and cell cycling were reduced and increased apoptosis was noted, in comparison with single drug treatment. These effects were significant in both the cell lines, indicating the ability of curcumin to increase the sensitivity of RB cells to chemotherapy drugs. Conclusion: Our in vitro findings showed that the combination of curcumin with single drug treatment showed marked synergistic inhibitory effect against RB cell lines. These results suggest that curcumin can be used as a modulator which may have a potential therapeutic value for the treatment of RB cancer patients.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance (MDR) which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp), multidrug resistance-associated proteins (MRP1, MRP2), and breast cancer resistance protein (BCRP). Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective, and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells, or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses, and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading, or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1α gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-κB. "Theragnostics" combining a cytotoxic agent, targeting moiety, chemosensitizing agent, and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome MDR in cancer cell.
    Frontiers in Pharmacology 07/2014; 5. DOI:10.3389/fphar.2014.00159
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanotechnology has become a key tool to overcome the main (bio)pharmaceutical drawbacks of drugs and to enable their passive or active targeting to specific cells and tissues. Pediatric therapies usually rely on the previous clinical experience in adults. However, there exists scientific evidence that drug pharmacokinetics and pharmacodynamics in children differ from those in adults. For example, the interaction of specific drugs with their target receptors undergoes changes over the maturation of the different organs and systems. A similar phenomenon is observed for toxicity and adverse effects. Thus, it is clear that the treatment of disease in children cannot be simplified to the direct adjustment of the dose to the body weight/surface. In this context, the implementation of innovative technologies (e.g., nanotechnology) in the pediatric population becomes extremely challenging. The present article overviews the different attempts to use nanotechnology to treat diseases in the pediatric population. Due to the relevance, though limited available literature on the matter, we initially describe from preliminary in vitro studies to preclinical and clinical trials aiming to treat pediatric infectious diseases and pediatric solid tumors by means of nanotechnology. Then, the perspectives of pediatric nanomedicine are discussed.
    Advanced drug delivery reviews 05/2014; 73. DOI:10.1016/j.addr.2014.05.004 · 12.71 Impact Factor


Available from