Neurons derived from human embryonic stem cells extend long-distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation.

Centre for Neuroscience, University of Melbourne, Parkville, VIC, Australia.
Frontiers in Cellular Neuroscience (Impact Factor: 4.47). 01/2012; 6:11. DOI: 10.3389/fncel.2012.00011
Source: PubMed

ABSTRACT Human pluripotent stem cells have the capacity for directed differentiation into a wide variety of neuronal subtypes that may be useful for brain repair. While a substantial body of research has lead to a detailed understanding of the ability of neurons in fetal tissue grafts to structurally and functionally integrate after intra-cerebral transplantation, we are only just beginning to understand the in vivo properties of neurons derived from human pluripotent stem cells. Here we have utilized the human embryonic stem (ES) cell line Envy, which constitutively expresses green fluorescent protein (GFP), in order to study the in vivo properties of neurons derived from human ES cells. Rapid and efficient neural induction, followed by differentiation as neurospheres resulted in a GFP+ neural precursor population with traits of neuroepithelial and dorsal forebrain identity. Ten weeks after transplantation into neonatal rats, GFP+ fiber patterns revealed extensive axonal growth in the host brain, particularly along host white matter tracts, although innervation of adjacent nuclei was limited. The grafts were composed of a mix of neural cell types including differentiated neurons and glia, but also dividing neural progenitors and migrating neuroblasts, indicating an incomplete state of maturation at 10 weeks. This was reflected in patch-clamp recordings showing stereotypical properties appropriate for mature functional neurons, including the ability to generate action potentials, as well profiles consistent for more immature neurons. These findings illustrate the intrinsic capacity for neurons derived from human ES cells to integrate at a structural and functional level following transplantation.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Assessing the efficacy of human stem cell transplantation in rodent models is complicated by the significant immune rejection that occurs. Two recent reports have shown conflicting results using neonatal tolerance to xenografts in rats. Here we extend this approach to mice and assess whether neonatal tolerance can prevent the rapid rejection of xenografts. In three strains of neonatal immune-intact mice, using two different brain transplant regimes and three independent stem cell types, we conclusively show that there is rapid rejection of the implanted cells. We also address specific challenges associated with the generation of humanized mouse models of disease.
    Experimental Neurology 01/2014; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate the roles of bone marrow stromal cells (BMSCs) in promoting axonal regeneration after complete transection of spinal cord in adult rats. Transplantation was done 9 days after injury. Only a few BMSCs were detected at the injury site 8 weeks after transplantation, yet there was robust growth of axons. The scarcity of surviving BMSCs may attribute to the adverse conditions in their ambient environment. In this connection, the immediate accumulation of a large number of macrophages/reactive microglia following BMSCs transplantation and subsequent cavitation of tissues may be detrimental to their survival. An unexpected finding following BMSCs transplantation was the marked increase in the nestin, GFAP, NF200, olig 3 and CNP positive cells at the injury site. Immunoelectron microscopy showed CNP cells were oval or fibroblast-like and had multiple perineurial-like compartments with long extending filopodia. The spatial relationship between regenerating axons and CNP-positive cells was also confirmed by double immunofluorescence staining. Our results suggest that transplantation of BMSCs elicits the influx and survival of local cells including CNP positive cells and Schwann cells into injury site, which provide structural support for the axon regeneration and remyelination after spinal cord injury.
    American Journal of Translational Research 01/2014; 6(3):224-35.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA?
    Journal of Neurochemistry 08/2013; 126(s1). · 3.97 Impact Factor

Full-text (3 Sources)

Available from
May 28, 2014