Article

Using combination therapy to override stromal-mediated chemoresistance in mutant FLT3-positive AML: synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors and JAK inhibitors.

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K (Impact Factor: 9.38). 04/2012; 26(10):2233-44. DOI: 10.1038/leu.2012.96
Source: PubMed

ABSTRACT Acute myeloid leukemia (AML) progenitors are frequently characterized by activating mutations in the receptor tyrosine kinase Fms-like tyrosine kinase-3 (FLT3). Protein tyrosine kinases are integral components of signaling cascades that have a role in both FLT3-mediated transformation as well as viability pathways that are advantageous to leukemic cell survival. The bone marrow microenvironment can diminish AML sensitivity to tyrosine kinase inhibitors. We hypothesized that inhibition of protein kinases in addition to FLT3 may be effective in overriding drug resistance in AML. We used a cell-based model mimicking stromal protection as part of an unbiased high-throughput chemical screen to identify kinase inhibitors with the potential to override microenvironment-mediated drug resistance in mutant FLT3-positive AML. Several related multi-targeted kinase inhibitors, including dasatinib, with the capability of reversing microenvironment-induced resistance to FLT3 inhibition were identified and validated. We validated synergy in vitro and demonstrated effective combination potential in vivo. In particular Janus kinase inhibitors were effective in overriding stromal protection and potentiating FLT3 inhibition in primary AML and cell lines. These results hint at a novel concept of using combination therapy to override drug resistance in mutant FLT3-positive AML in the bone marrow niche and suppress or eradicate residual disease.

1 Follower
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many patients with acute myeloid leukemia will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in acute myeloid leukemia. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials.
    Expert Review of Hematology 08/2014; 7(4):439-464. DOI:10.1586/17474086.2014.932687 · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pacritinib (previously known as SB-1518) is an innovative selective inhibitor of Janus kinase 2 and FMS-related tyrosine kinase 3 providing potential in the treatment of hematological malignancies such as myeloproliferative neoplasias, acute myeloid leukemia, and various lymphomas. Pacritinib has potent antiproliferative activity in Janus kinase 2 and/or FMS-related tyrosine kinase 3 activity-dependent cell lines and an ability to promote apoptosis and inhibit the signal transducers and activators of transcription (STAT) pathway. Pharmacokinetic studies have indicated a good per os bioavailability and favorable kinetic parameters. To date, promising results have been produced in five completed early-phase clinical trials in which pacritinib has been studied. Pacritinib displayed interesting activity and an acceptable safety profile, with mild to moderate gastrointestinal disorders being its most common adverse effects.
    Hematology Research and Reviews 01/2014; 5:143-52. DOI:10.2147/JBM.S51253
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute myeloid leukemia remains associated with poor outcomes despite advances in our understanding of the complicated molecular events driving leukemogenesis and malignant progression. Those patients harboring mutations in the FLT3 receptor tyrosine kinase have a particularly poor prognosis; however, significant excitement has been generated by the emergence of a variety of targeted inhibitors capable of suppressing FLT3 signaling in vivo. Here we will review results from preclinical studies and early clinical trials evaluating both first- and second-generation FLT3 inhibitors. Early FLT3 inhibitors (including sunitinib, midostaurin, and lestaurtinib) demonstrated significant promise in preclinical models of FLT3 mutant AML. Unfortunately, many of these compounds failed to achieve robust and sustained FLT3 inhibition in early clinical trials, at best resulting in only transient decreases in peripheral blast counts. These results have prompted the development of second-generation FLT3 inhibitors, epitomized by the novel agent quizartinib. These second-generation inhibitors have demonstrated enhanced FLT3 specificity and have been generally well tolerated in early clinical trials. Several FLT3 inhibitors have reached phase III clinical trials, and a variety of phase I/II trials exploring a role for these novel compounds in conjunction with conventional chemotherapy or hematopoietic stem cell transplantation are ongoing. Finally, molecular insights provided by FLT3 inhibitors have shed light upon the variety of mechanisms underlying the acquisition of resistance and have provided a rationale supporting the use of combinatorial regimens with other emerging targeted therapies.
    06/2014; 5(3):65-77. DOI:10.1177/2040620714532123