Molecular imaging for personalized cancer care

Department of Radiology, Memorial Sloan-Kettering Cancer Center, NY 10065, USA.
Molecular oncology (Impact Factor: 5.94). 03/2012; 6(2):182-95. DOI: 10.1016/j.molonc.2012.02.005
Source: PubMed

ABSTRACT Molecular imaging is rapidly gaining recognition as a tool with the capacity to improve every facet of cancer care. Molecular imaging in oncology can be defined as in vivo characterization and measurement of the key biomolecules and molecularly based events that are fundamental to the malignant state. This article outlines the basic principles of molecular imaging as applied in oncology with both established and emerging techniques. It provides examples of the advantages that current molecular imaging techniques offer for improving clinical cancer care as well as drug development. It also discusses the importance of molecular imaging for the emerging field of theranostics and offers a vision of how molecular imaging may one day be integrated with other diagnostic techniques to dramatically increase the efficiency and effectiveness of cancer care.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The inability to visualize the true extent of cancers represents a significant challenge in many areas of oncology. The margins of most cancer types are not well demarcated because the cancer diffusely infiltrates the surrounding tissues. Furthermore, cancers may be multifocal and characterized by the presence of microscopic satellite lesions. Such microscopic foci represent a major reason for persistence of cancer, local recurrences, and metastatic spread, and are usually impossible to visualize with currently available imaging technologies. An imaging method to reveal the true extent of tumors is desired clinically and surgically. We show the precise visualization of tumor margins, microscopic tumor invasion, and multifocal locoregional tumor spread using a new generation of surface-enhanced resonance Raman scattering (SERRS) nanoparticles, which are termed SERRS nanostars. The SERRS nanostars feature a star-shaped gold core, a Raman reporter resonant in the near-infrared spectrum, and a primer-free silication method. In genetically engineered mouse models of pancreatic cancer, breast cancer, prostate cancer, and sarcoma, and in one human sarcoma xenograft model, SERRS nanostars enabled accurate detection of macroscopic malignant lesions, as well as microscopic disease, without the need for a targeting moiety. Moreover, the sensitivity (1.5 fM limit of detection) of SERRS nanostars allowed imaging of premalignant lesions of pancreatic and prostatic neoplasias. High sensitivity and broad applicability, in conjunction with their inert gold-silica composition, render SERRS nanostars a promising imaging agent for more precise cancer imaging and resection.
    Science translational medicine 01/2015; 7:271ra7. DOI:10.1126/scitranslmed.3010633 · 14.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In cancer-drug development, a number of different end points have been used to establish efficacy and support regulatory approval, such as overall survival, progression-free survival (PFS), and radiographic response rate. However, these traditional end points have important limitations. For example, in lung cancer clinical trials, evaluating overall survival end points is a protracted process and these end points are most reliable when crossover to the investigational therapy is not permitted. Furthermore, although radiographic surrogate end points, such as PFS and response rate, generally correlate with clinical benefit in the setting of cytotoxic chemotherapy and molecular targeted therapies, novel immunotherapies might have atypical response kinetics, which confounds radiographic interpretation. In this Review, we discuss the need to develop alternative or surrogate end points for lung cancer clinical trials, and focus on several new biomarkers that could serve as surrogate end points, including functional imaging biomarkers, circulating factors (tumour proteins, DNA, and cells), and pharmacodynamic tumour markers. By enabling the size, duration, and complexity of cancer trials to be reduced, biomarker end points hold the promise to accelerate drug development and improve patient outcomes.
    Nature Reviews Clinical Oncology 12/2014; DOI:10.1038/nrclinonc.2014.222 · 15.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging.
    01/2015; 49(1):5-12. DOI:10.4132/jptm.2014.10.24


Available from