Article

Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases.

CELLECTIS S.A., Paris, France.
Nucleic Acids Research (Impact Factor: 8.28). 03/2012; 40(13):6367-79. DOI: 10.1093/nar/gks268
Source: PubMed

ABSTRACT The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.

1 Bookmark
 · 
102 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: LAGLIDADG homing endonucleases (meganucleases) are sequence-specific DNA cleavage enzymes used for genome engineering. Recently, meganucleases fused to transcription activator-like effectors have been demonstrated to efficiently introduce targeted genome modifications. However, retargeting meganucleases to genomic sequences of interest remains challenging because it usually requires extensive alteration of a large number of amino acid residues that are situated in and near the DNA interface. Here we describe an effective strategy to extensively redesign such an extensive biomolecular interface. Well-characterized meganucleases are computationally screened to identify the best candidate enzyme to target a genomic region; that protein is then redesigned using iterative rounds of in vitro selections within compartmentalized aqueous droplets, which enable screening of extremely large numbers of protein variants at each step. The utility of this approach is illustrated by engineering three different meganucleases to cleave three human genomic sites (found in two exons and one flanking intron in two clinically relevant genes) and a fourth endonuclease that discriminates between single-nucleotide polymorphism variants of one of those targets. Fusion with transcription activator-like effector DNA binding domains significantly enhances targeted modification induced by meganucleases engineered in this study. Simultaneous expression of two such fusion endonucleases results in efficient excision of a defined genomic region.
    Proceedings of the National Academy of Sciences 03/2014; · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted genome editing with engineered nucleases has transformed the ability to introduce precise sequence modifications at almost any site within the genome. A major obstacle to probing the efficiency and consequences of genome editing is that no existing method enables the frequency of different editing events to be simultaneously measured across a cell population at any endogenous genomic locus. We have developed a method for quantifying individual genome-editing outcomes at any site of interest with single-molecule real-time (SMRT) DNA sequencing. We show that this approach can be applied at various loci using multiple engineered nuclease platforms, including transcription-activator-like effector nucleases (TALENs), RNA-guided endonucleases (CRISPR/Cas9), and zinc finger nucleases (ZFNs), and in different cell lines to identify conditions and strategies in which the desired engineering outcome has occurred. This approach offers a technique for studying double-strand break repair, facilitates the evaluation of gene-editing technologies, and permits sensitive quantification of editing outcomes in almost every experimental system used.
    Cell Reports 03/2014; · 7.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity.
    Mobile DNA. 03/2014; 5(1):7.

Full-text (2 Sources)

View
18 Downloads
Available from
May 30, 2014