Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk.

Radboud University, Nijmegen Center for Molecular Life Sciences, Department of Molecular Biology, 6500 HB Nijmegen, The Netherlands.
Genome Research (Impact Factor: 13.85). 03/2012; 22(6):1128-38. DOI: 10.1101/gr.133728.111
Source: PubMed

ABSTRACT Cross-talk between DNA methylation and histone modifications drives the establishment of composite epigenetic signatures and is traditionally studied using correlative rather than direct approaches. Here, we present sequential ChIP-bisulfite-sequencing (ChIP-BS-seq) as an approach to quantitatively assess DNA methylation patterns associated with chromatin modifications or chromatin-associated factors directly. A chromatin-immunoprecipitation (ChIP)-capturing step is used to obtain a restricted representation of the genome occupied by the epigenetic feature of interest, for which a single-base resolution DNA methylation map is then generated. When applied to H3 lysine 27 trimethylation (H3K27me3), we found that H3K27me3 and DNA methylation are compatible throughout most of the genome, except for CpG islands, where these two marks are mutually exclusive. Further ChIP-BS-seq-based analysis in Dnmt triple-knockout (TKO) embryonic stem cells revealed that total loss of CpG methylation is associated with alteration of H3K27me3 levels throughout the genome: H3K27me3 in localized peaks is decreased while broad local enrichments (BLOCs) of H3K27me3 are formed. At an even broader scale, these BLOCs correspond to regions of high DNA methylation in wild-type ES cells, suggesting that DNA methylation prevents H3K27me3 deposition locally and at a megabase scale. Our strategy provides a unique way of investigating global interdependencies between DNA methylation and other chromatin features.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radioresistance is still an emerging problem for radiotherapy of oral cancer. Aberrant epigenetic alterations play an important role in cancer development, yet the role of such alterations in radioresistance of oral cancer is not fully explored. Using a methylation microarray, we identified promoter hypermethylation of FHIT (fragile histidine triad) in radioresistant OML1-R cells, established from hypo-fractionated irradiation of parental OML1 radiosensitive oral cancer cells. Further analysis confirmed that transcriptional repression of FHIT was due to promoter hypermethylation, H3K27me3 and overexpression of methyltransferase EZH2 in OML1-R cells. Epigenetic interventions or depletion of EZH2 restored FHIT expression. Ectopic expression of FHIT inhibited tumor growth in both in vitro and in vivo models, while also resensitizing radioresistant cancer cells to irradiation, by restoring Chk2 phosphorylation and G2/M arrest. Clinically, promoter hypermethylation of FHIT inversely correlated with its expression and independently predicted both locoregional control and overall survival in 40 match-paired oral cancer patient samples. Further in vivo therapeutic experiments confirmed that inhibition of DNA methylation significantly resensitized radioresistant oral cancer cell xenograft tumors. These results show that epigenetic silencing of FHIT contributes partially to radioresistance and predicts clinical outcomes in irradiated oral cancer. The radiosensitizing effect of epigenetic interventions warrants further clinical investigation.
    Oncotarget 11/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is related closely to sequence contexts and chromatin modifications; however, their potential differences in different genomic regions across cell types remain largely unexplored. We used publicly available genome-scale DNA methylation and histone modification profiles to study their relationships among different genomic regions in human embryonic stem cells (H1), H1-derived neuronal progenitor cultured cells (NPC), and foetal fibroblasts (IMR90) using the Random forests classifier. Histone modifications achieved high accuracy in modelling DNA methylation patterns on a genome scale in the three cell types. The inclusion of sequence features helped improve accuracy only in non-promoter regions of IMR90. Furthermore, the top six feature combinations obtained by mean decrease Gini were important indicators of different DNA methylation patterns, suggesting that H3K4me2 and H3K4me3 are important indicators that are independent of genomic regions and cell types. H3K9me3 was IMR90-specific and exhibited a genomic region-specific correlation with DNA methylation. Variations of essential chromatin modification signals may effectively discriminate changes of DNA methylation between H1 and IMR90. Genes with different co-variations of epigenetic marks exhibited genomic region-specific biological relevance. This study provides an integrated strategy to identify systematically essential epigenetic and genetic elements of genomic region-specific and cell type-specific DNA methylation patterns.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite growing appreciation of the importance of epigenetics in breast cancer, our understanding of epigenetic alterations of non-coding RNAs (ncRNAs) in breast cancer remains limited. Here, we explored the epigenetic patterns of ncRNAs in breast cancers using published sequencing-based methylome data, primarily focusing on the two most commonly studied ncRNA biotypes, long ncRNAs and miRNAs. We observed widely aberrant methylation in the promoters of ncRNAs, and this abnormal methylation was more frequent than that in protein-coding genes. Specifically, intergenic ncRNAs were observed to comprise a majority (51.45% of the lncRNAs and 51.57% of the miRNAs) of the aberrantly methylated ncRNA promoters. Moreover, we summarized five patterns of aberrant ncRNA promoter methylation in the context of genomic CpG islands (CGIs), in which aberrant methylation occurred not only on CGIs, but also in regions flanking CGI and in CGI-lacking promoters. Integration with transcriptional datasets enabled us to determine that the ncRNA promoter methylation events were associated with transcriptional changes. Furthermore, a panel of ncRNAs were identified as biomarkers that discriminated between disease phenotypes. Finally, the potential functions of aberrantly methylated ncRNAs were predicted, suggestiong that ncRNAs and coding genes cooperatively mediate pathway dysregulation during the development and progression of breast cancer.
    Scientific Reports 03/2015; 5. DOI:10.1038/srep08790 · 5.08 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014