Angiogenesis inhibition for the improvement of photodynamic therapy: The revival of a promising idea.

Medical Photonics Group, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 03/2012; 1826(1):53-70. DOI: 10.1016/j.bbcan.2012.03.003
Source: PubMed

ABSTRACT Photodynamic therapy (PDT) is a minimally invasive form of treatment, which is clinically approved for the treatment of angiogenic disorders, including certain forms of cancer and neovascular eye diseases. Although the concept of PDT has existed for a long time now, it has never made a solid entrance into the clinical management of cancer. This is likely due to secondary tissue reactions, such as inflammation and neoangiogenesis. The recent development of clinically effective angiogenesis inhibitors has lead to the initiation of research on the combination of PDT with such angiostatic targeted therapies. Preclinical studies in this research field have shown promising results, causing a revival in the field of PDT. This review reports on the current research efforts on PDT and vascular targeted combination therapies. Different combination strategies with angiogenesis inhibition and vascular targeting approaches are discussed. In addition, the concept of increasing PDT selectivity by targeted delivery of photosensitizers is presented. Furthermore, the current insights on sequencing the therapy arms of such combinations will be discussed in light of vascular normalization induced by angiogenesis inhibition.

  • Source
    J Anal Bioanal Tech. 10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.
    Angiogenesis 07/2013; · 4.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 2-Demethoxy-2,3-ethylenediamino hypocrellin B (EDAHB) is an efficient photosensitizer that mediates cancer cell apoptosis. In order to better understand the molecular mechanisms involved in its antitumour activity, we used proteomics technology to identify candidate targets in A549 cells using EDAHB-mediated photodynamic therapy (EDAHB-PDT). The protein profile changes between untreated and PDT-treated A549 cells were analysed using two-dimensional polyacrylamide gel electrophoresis (2-DE). Differentially expressed protein spots were identified using matrix-assisted laser desorption-time-of-flight (MALDI-TOF) mass spectrometry; and 15 differentially expressed proteins (over 2-fold, p<0.05) were identified in PDT-treated A549 cells compared with untreated cells. Among them, the expression of pyruvate kinase M2 (PKM2), a key enzyme involved in glycolysis, was found to be significantly decreased in A549 cells following EDAHB-PDT. Transient ectopic over-expression of PKM2 attenuated death of EDAHB-PDT-treated A549 cells, whereas knockdown of PKM2 expression by RNA interference increased the photocytotoxicity of EDAHB. Moreover, a decrease in lactate production was detected in PDT-treated A549 cells. These observations suggest that PKM2 plays an important role in the antitumour action of EDAHB-PDT; thus, it may be a potential molecular target to increase the efficacy of PDT in cancer therapy.
    Journal of photochemistry and photobiology. B, Biology 04/2014; 134C:1-8. · 3.11 Impact Factor


Available from
Jun 6, 2014