CSF-Biomarkers in Olympic Boxing: Diagnosis and Effects of Repetitive Head Trauma

Hangzhou Normal University, China
PLoS ONE (Impact Factor: 3.23). 04/2012; 7(4):e33606. DOI: 10.1371/journal.pone.0033606
Source: PubMed


Sports-related head trauma is common but still there is no established laboratory test used in the diagnostics of minimal or mild traumatic brain injuries. Further the effects of recurrent head trauma on brain injury markers are unknown. The purpose of this study was to investigate the relationship between Olympic (amateur) boxing and cerebrospinal fluid (CSF) brain injury biomarkers.
The study was designed as a prospective cohort study. Thirty Olympic boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in the study. CSF samples were collected by lumbar puncture 1-6 days after a bout and after a rest period for at least 14 days. The controls were tested once. Biomarkers for acute and chronic brain injury were analysed.
NFL (mean ± SD, 532±553 vs 135±51 ng/L p = 0.001), GFAP (496±238 vs 247±147 ng/L p<0.001), T-tau (58±26 vs 49±21 ng/L p<0.025) and S-100B (0.76±0.29 vs 0.60±0.23 ng/L p = 0.03) concentrations were significantly increased after boxing compared to controls. NFL (402±434 ng/L p = 0.004) and GFAP (369±113 ng/L p = 0.001) concentrations remained elevated after the rest period.
Increased CSF levels of T-tau, NFL, GFAP, and S-100B in >80% of the boxers demonstrate that both the acute and the cumulative effect of head trauma in Olympic boxing may induce CSF biomarker changes that suggest minor central nervous injuries. The lack of normalization of NFL and GFAP after the rest period in a subgroup of boxers may indicate ongoing degeneration. The recurrent head trauma in boxing may be associated with increased risk of chronic traumatic brain injury.

Download full-text


Available from: Helena Brisby,
1 Follower
22 Reads
  • Source
    • "While both isoforms are present in AD, levels of phosphotau are more conceptually aligned with NFTs [47] [48]. Nevertheless, the neurocognitive effects of total-tau are likely to be significant, especially in cases of comorbid pathology, such as cerebrovascular disease [40] [41] [42] [43] [44] [45] [46]. A task for future work is to confirm the special effects of phospho-tau, compared to total tau. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer’s disease (AD) is characterized by two primary pathologies: tau-related neurofibrillary tangles and the extracellular accumulation of amyloid-β (Aβ). The development of these pathologies is topologically distinct early in the disease, with Aβ beginning to accumulate as a diffuse, neocortical pathology, while tau-related pathology begins to form in mesial temporal regions. This study investigated the hypothesis that, by virtue of this distinction, there exist preferential associations between the primary pathologies and aspects of the cognitive phenotype. We investigated the relationship between cerebrospinal fluid (CSF) biomarkers for tau and Aβ pathologies with neurocognitive measures in 191 patients with mild cognitive impairment (MCI). Participants completed cognitive tests of new learning, information processing speed, and working memory. Separate regression models were computed and then followed up with mediation analyses to examine the predictive status of CSF biomarkers. The effect of Aβ on learning was mediated by phospho-tau (p = 0.008). In contrast, Aβ had a direct effect on information processing speed that was not mediated by phospho-tau (p = 0.59). No predictors were significant for working memory. This study provided evidence for a differential relationship of Aβ and phospho-tau pathologies on the neurocognitive phenotype of MCI. This supports the proposition that these primary AD pathologies maximally affect different aspects of cognition, and has potential implications for cognitive assessments and the use of biomarkers in disease-modifying therapeutic trials.
    Journal of Alzheimer's disease: JAD 05/2015; 47(4):965-975. DOI:10.3233/JAD-142643 · 4.15 Impact Factor
  • Source
    • "Serum levels of GFAP show high variability or no elevation after mTBI, yet reports are confounded by varying delimitation of ‘mild’ as to include more moderate cases with lesions and positive imaging signals or not. Thus the discriminative power of GFAP as a mild neurotrauma biomarker is conflicted [56,114]. Measured CSF levels of several biomarkers in boxers acutely after one or repeated blows to the head as well as after 14 days, revealed elevated levels of GFAP with large variations among the boxers suffering a concussion [56]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurotrauma or injuries to the central nervous system (CNS) are a serious public health problem worldwide. Approximately 75% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation. Hence, there is an urgent need for an accurate chemical measure in biofluids to serve as a diagnostic tool for invisible brain wounds, to monitor severe patient trajectories, and to predict survival chances. Although a number of neurotrauma marker candidates have been reported, the broad spectrum of TBI limits the significance of small cohort studies. Specificity and sensitivity issues compound the development of a conclusive diagnostic assay, especially for concussion patients. Thus, the neurotrauma field currently has no diagnostic biofluid test in clinical use.Content: We discuss the challenges of discovering new and validating identified neurotrauma marker candidates using proteomics-based strategies, including targeting, selection strategies and the application of mass spectrometry (MS) technologies and their potential impact to the neurotrauma field. Many studies use TBI marker candidates based on literature reports, yet progress in genomics and proteomics have started to provide neurotrauma protein profiles. Choosing meaningful marker candidates from such 'long lists' is still pending, as only few can be taken through the process of preclinical verification and large scale translational validation. Quantitative mass spectrometry targeting specific molecules rather than random sampling of the whole proteome, e.g., multiple reaction monitoring (MRM), offers an efficient and effective means to multiplex the measurement of several candidates in patient samples, thereby omitting the need for antibodies prior to clinical assay design. Sample preparation challenges specific to TBI are addressed. A tailored selection strategy combined with a multiplex screening approach is helping to arrive at diagnostically suitable candidates for clinical assay development. A surrogate marker test will be instrumental for critical decisions of TBI patient care and protection of concussion victims from repeated exposures that could result in lasting neurological deficits.
    Clinical Proteomics 03/2014; 11(1):11. DOI:10.1186/1559-0275-11-11
  • Source
    • "Regarding the other neurodegenerative diseases, neither imaging nor fluid biomarkers are available for their diagnosis although there are some experimental data coming out in PD (Parnetti et al., 2013; Schapira, 2013) and FTLD (Hu et al., 2010, 2013). In CTE, concussion, and post-concussion syndrome there are a few studies suggesting abnormalities including elevated levels of CSF tau (Neselius et al., 2012; Shenton et al., 2012; Zetterberg et al., 2013) but these lack pathological confirmation and haven't been reproduced. CTE is still in its infancy with regard to defining the clinical syndrome and determining in vivo biomarkers of the underlying pathology. "
    [Show abstract] [Hide abstract]
    ABSTRACT: "Chronic traumatic encephalopathy" (CTE) is described as a slowly progressive neurodegenerative disease believed to result from multiple concussions. Traditionally, concussions were considered benign events and although most people recover fully, about 10% develop a post-concussive syndrome with persisting neurological, cognitive and neuropsychiatric symptoms. CTE was once thought to be unique to boxers, but it has now been observed in many different athletes having suffered multiple concussions as well as in military personal after repeated blast injuries. Much remains unknown about the development of CTE but its pathological substrate is usually tau, similar to that seen in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). The aim of this "perspective" is to compare and contrast clinical and pathological CTE with the other neurodegenerative proteinopathies and highlight that there is an urgent need for understanding the relationship between concussion and the development of CTE as it may provide a window into the development of a proteinopathy and thus new avenues for treatment.
    Frontiers in Human Neuroscience 01/2014; 8:30. DOI:10.3389/fnhum.2014.00030 · 3.63 Impact Factor
Show more