Fungal Biofilms

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
PLoS Pathogens (Impact Factor: 8.06). 04/2012; 8(4):e1002585. DOI: 10.1371/journal.ppat.1002585
Source: PubMed
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biofilms represent a niche for microorganisms where they are protected from both the host immune system and antimicrobial therapies. Biofilm growth serves as an increasing source of clinical infections. Candida infections are difficult to manage due to their persistent nature and associated drug resistance. Observations made in biofilm research have generally been limited to in vitro models. Using a rat central venous catheter model, we characterized in vivo Candida albicans biofilm development. Time-course quantitative culture demonstrated a progressive increase in the burden of viable cells for the first 24 h of development. Fluorescence and scanning electron microscopy revealed a bilayered architecture. Adjacent to the catheter surface, yeast cells were densely embedded in an extracellular matrix. The layer adjacent to the catheter lumen was less dense. The outermost surface of the biofilm contained both yeast and hyphal forms, and the extracellular material in which they were embedded appeared fibrous. These architectural features were similar in many respects to those described for in vitro models. However, scanning electron microscopy also revealed host cells embedded within the biofilm matrix. Drug susceptibility was determined by using two assays and demonstrated a biofilm-associated drug resistance phenotype. The first assay demonstrated continued growth of cells in the presence of supra-MIC antifungal drug concentrations. The second assay demonstrated reduced susceptibility of biofilm-grown cells following removal from the biofilm structure. Lastly, the model provided sufficient nucleic material for study of differential gene expression associated with in vivo biofilm growth. Two fluconazole efflux pumps, CDR1 and CDR2, were upregulated in the in vivo biofilm-associated cells. Most importantly, the studies described provide a model for further investigation into the molecular mechanisms of C. albicans biofilm biology and drug resistance. In addition, the model provides a means to study novel drug therapies and device technologies targeted to the control of biofilm-associated infections.
    Infection and Immunity 11/2004; 72(10):6023-31. DOI:10.1128/IAI.72.10.6023-6031.2004 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida parapsilosis is an important cause of candidiasis, yet few molecular tools are available. We adapted a recyclable nourseothricin resistance marker gene (SAT1) originally developed for use with C. albicans in order to generate gene knockouts from C. parapsilosis. We first replaced the promoters driving expression of the FLP recombinase and the SAT1 genes with the equivalent sequences from C. parapsilosis. We then used the cassette to generate a homozygous knockout of C. parapsilosis URA3. The ura3 knockouts have altered colony morphologies. We also knocked out both alleles of an ortholog of BCR1, a gene encoding a transcription factor known to be required for biofilm development in C. albicans. We show that C. parapsilosis BCR1 is necessary for biofilm development in C. parapsilosis and for expression of the cell wall protein encoded by RBT1. Our results suggest that there are significant similarities in the regulation of biofilms between the two species, despite the fact that C. parapsilosis does not generate true hyphae and that BCR1 regulates the expression of many hypha-specific adhesins in C. albicans.
    Eukaryotic Cell 09/2007; 6(8):1310-9. DOI:10.1128/EC.00136-07 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the phase-dependent expression and activity of efflux pumps in Aspergillus fumigatus treated with voriconazole. Fourteen strains were shown to become increasingly resistant in the 12-h (16- to 128-fold) and 24-h (>512-fold) phases compared to 8-h germlings. An Ala-Nap uptake assay demonstrated a significant increase in efflux pump activity in the 12-h and 24-h phases (P<0.0001). The efflux pump activity of the 8-h germling cells was also significantly induced by voriconazole (P<0.001) after 24 h of treatment. Inhibition of efflux pump activity with the competitive substrate MC-207,110 reduced the voriconazole MIC values for the A. fumigatus germling cells by 2- to 8-fold. Quantitative expression analysis of AfuMDR4 mRNA transcripts showed a phase-dependent increase as the mycelial complexity increased, which was coincidental with a strain-dependent increase in azole resistance. Voriconazole also significantly induced this in a time-dependent manner (P<0.001). Finally, an in vivo mouse biofilm model was used to evaluate efflux pump expression, and it was shown that AfuMDR4 was constitutively expressed and significantly induced by treatment with voriconazole after 24 h (P<0.01). Our results demonstrate that efflux pumps are expressed in complex A. fumigatus biofilm populations and that this contributes to azole resistance. Moreover, voriconazole treatment induces efflux pump expression. Collectively, these data may provide evidence for azole treatment failures in clinical cases of aspergillosis.
    Antimicrobial Agents and Chemotherapy 02/2011; 55(5):2092-7. DOI:10.1128/AAC.01189-10 · 4.45 Impact Factor
Show more

Preview (2 Sources)

Available from