Article

High motility of triple-negative breast cancer cells is due to repression of plakoglobin gene by metastasis modulator protein SLUG.

Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 04/2012; 287(23):19472-86. DOI: 10.1074/jbc.M112.345728
Source: PubMed

ABSTRACT One of highly pathogenic breast cancer cell types are the triple negative (negative in the expression of estrogen, progesterone, and ERBB2 receptors) breast cancer cells. These cells are highly motile and metastatic and are characterized by high levels of the metastasis regulator protein SLUG. Using isogenic breast cancer cell systems we have shown here that high motility of these cells is directly correlated with the levels of the SLUG in these cells. Because epithelial/mesenchymal cell motility is known to be negatively regulated by the catenin protein plakoglobin, we postulated that the transcriptional repressor protein SLUG increases the motility of the aggressive breast cancer cells through the knockdown of the transcription of the plakoglobin gene. We found that SLUG inhibits the expression of plakoglobin gene directly in these cells. Overexpression of SLUG in the SLUG-deficient cancer cells significantly decreased the levels of mRNA and protein of plakoglobin. On the contrary, knockdown of SLUG in SLUG-high cancer cells elevated the levels of plakoglobin. Blocking of SLUG function with a double-stranded DNA decoy that competes with the E2-box binding of SLUG also increased the levels of plakoglobin mRNA, protein, and promoter activity in the SLUG-high triple negative breast cancer cells. Overexpression of SLUG in the SLUG-deficient cells elevated the motility of these cells. Knockdown of plakoglobin in these low motility non-invasive breast cancer cells rearranged the actin filaments and increased the motility of these cells. Forced expression of plakoglobin in SLUG-high cells had the reverse effects on cellular motility. This study thus implicates SLUG-induced repression of plakoglobin as a motility determinant in highly disseminating breast cancer.

0 Followers
 · 
101 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most triple-negative breast cancers (TNBCs) exhibit gene expression patterns associated with epithelial-to-mesenchymal transition (EMT), a feature that correlates with a propensity for metastatic spread. Overexpression of the EMT regulator Slug is detected in basal and mesenchymal-type TNBCs and is associated with reduced E-cadherin expression and aggressive disease. The effects of Slug depend, in part, on the interaction of its N-terminal SNAG repressor domain with the chromatin-modifying protein lysine demethylase 1 (LSD1); thus, we investigated whether tranylcypromine [also known as trans-2-phenylcyclopropylamine hydrochloride (PCPA) or Parnate], an inhibitor of LSD1 that blocks its interaction with Slug, suppresses the migration, invasion, and metastatic spread of TNBC cell lines. We show here that PCPA treatment induces the expression of E-cadherin and other epithelial markers and markedly suppresses migration and invasion of TNBC cell lines MDA-MB-231 and BT-549. These effects were phenocopied by Slug or LSD1 silencing. In two models of orthotopic breast cancer, PCPA treatment reduced local tumor growth and the number of lung metastases. In mice injected directly in the blood circulation with MDA-MB-231 cells, PCPA treatment or Slug silencing markedly inhibited bone metastases but had no effect on lung infiltration. Thus, blocking Slug activity may suppress the metastatic spread of TNBC and, perhaps, specifically inhibit homing/colonization to the bone. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.
    Neoplasia (New York, N.Y.) 12/2014; 16(12):1047-58. DOI:10.1016/j.neo.2014.10.006 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.
    Archiv für Experimentelle Pathologie und Pharmakologie 09/2014; 388(2). DOI:10.1007/s00210-014-1046-5 · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Basal-type breast cancers are among the most aggressive and deadly breast cancer subtypes, displaying a high metastatic ability associated with mesenchymal features. However, the molecular mechanisms underlying the maintenance of mesenchymal phenotypes of basal-type breast cancer cells remain obscure. Here, we report that KRAS is a critical regulator for the maintenance of mesenchymal features in basal-type breast cancer cells. KRAS is preferentially activated in basal-type breast cancer cells as compared with luminal type. By loss and gain of KRAS, we found that KRAS is necessary and sufficient for the maintenance of mesenchymal phenotypes and metastatic ability through SLUG expression. Taken together, this study demonstrates that KRAS is a critical regulator for the metastatic behavior associated with mesenchymal features of breast cancer cells, implicating a novel therapeutic target for basal-type breast cancer.Experimental & Molecular Medicine (2015) 47, e137; doi:10.1038/emm.2014.99; published online 30 January 2015.
    Experimental and Molecular Medicine 01/2015; 47:e137. DOI:10.1038/emm.2014.99 · 2.46 Impact Factor