FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections.

Novartis Vaccines and Diagnostics Srl, Siena, Italy.
mBio (Impact Factor: 6.88). 01/2012; 3(2). DOI: 10.1128/mBio.00010-12
Source: PubMed

ABSTRACT The increasing antibiotic resistance of pathogenic Escherichia coli species and the absence of a pan-protective vaccine pose major health concerns. We recently identified, by subtractive reverse vaccinology, nine Escherichia coli antigens that protect mice from sepsis. In this study, we characterized one of them, ECOK1_0290, named FdeC (factor adherence E. coli) for its ability to mediate E. coli adhesion to mammalian cells and extracellular matrix. This adhesive propensity was consistent with the X-ray structure of one of the FdeC domains that shows a striking structural homology to Yersinia pseudotuberculosis invasin and enteropathogenic E. coli intimin. Confocal imaging analysis revealed that expression of FdeC on the bacterial surface is triggered by interaction of E. coli with host cells. This phenotype was also observed in bladder tissue sections derived from mice infected with an extraintestinal strain. Indeed, we observed that FdeC contributes to colonization of the bladder and kidney, with the wild-type strain outcompeting the fdeC mutant in cochallenge experiments. Finally, intranasal mucosal immunization with recombinant FdeC significantly reduced kidney colonization in mice challenged transurethrally with uropathogenic E. coli, supporting a role for FdeC in urinary tract infections. IMPORTANCE: Pathogenic Escherichia coli strains are involved in a diverse spectrum of diseases, including intestinal and extraintestinal infections (urinary tract infections and sepsis). The absence of a broadly protective vaccine against all these E. coli strains is a major problem for modern society due to high costs to health care systems. Here, we describe the structural and functional properties of a recently reported protective antigen, named FdeC, and elucidated its putative role during extraintestinal pathogenic E. coli infection by using both in vitro and in vivo infection models. The conservation of FdeC among strains of different E. coli pathotypes highlights its potential as a component of a broadly protective vaccine against extraintestinal and intestinal E. coli infections.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli outbreak in Germany, which resulted in more than 4,000 cases, including 908 cases of hemolytic-uremic syndrome (HUS) and at least 50 deaths, highlighted the genome plasticity of E. coli and the potential for new virulent strains to emerge. The analysis of 170 E. coli genome sequences for the presence of nine previously identified protective extraintestinal pathogenic E. coli antigens suggested the feasibility of a combination vaccine as a universal intervention against all pathogenic E. coli strains. IMPORTANCE: This article reports on the feasibility of a combination vaccine as a universal intervention against all pathogenic Escherichia coli strains.
    mBio 01/2012; 3(3). · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immunoglobulin (Ig) protein domain is widespread in nature having a well-recognized role in proteins of the immune system. In this review, we describe the proteins containing Ig-like domains in Escherichia coli and enterobacteria, reporting their structural and functional properties, protein folding, and diverse biological roles. In addition, we cover the expression of heterologous Ig domains in E. coli owing to its biotechnological application for expression and selection of antibody fragments and full-length IgG molecules. Ig-like domains in E. coli and enterobacteria are frequently found in cell surface proteins and fimbrial organelles playing important functions during host cell adhesion and invasion of pathogenic strains, being structural components of pilus and nonpilus fimbrial systems and members of the intimin/invasin family of outer membrane (OM) adhesins. Ig-like domains are also found in periplasmic chaperones and OM usher proteins assembling fimbriae, in oxidoreductases and hydrolytic enzymes, ATP-binding cassette transporters, sugar-binding and metal-resistance proteins. The folding of most E. coli Ig-like domains is assisted by periplasmic chaperones, peptidyl-prolyl cis/trans isomerases and disulfide bond catalysts that also participate in the folding of antibodies expressed in this bacterium. The technologies for expression and selection of recombinant antibodies in E. coli are described along with their biotechnological potential.
    FEMS microbiology reviews 06/2012; · 10.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome-based reverse vaccinology (RV) is a multi-step experimental strategy which starts from in silico analysis of whole genome sequences, from which vaccine candidates can be selected by using bioinformatic algorithms to identify putative protective antigens. In this review, we examine the current state of genome-based RV-engineered vaccines and future applications. The first product of genome-based RV is Bexsero(®), a vaccine developed for preventing Neisseria meningitidis serogroup B infection, and the strategy is currently being used for the development of new vaccines for other obdurate and emerging bacterial diseases. Improved sequencing technologies and the ongoing whole-genome sequence analyses of helminths, protozoa, and ectoparasites also currently serve as a basis for an RV strategy to produce new potential vaccines against eukaryotic pathogens. We also highlight an emerging approach-structure-based vaccinology-that exploits the information derived from the determined three-dimensional structures of vaccine candidates. Regardless, genome-based RV and other vaccine discovery platforms still depend on empirical experimental science to glean, from the hundreds of identified antigens from any one pathogen, those that should be combined to produce an effective vaccine.
    BioDrugs 04/2013; · 2.12 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014