Article

Coordinate Regulation of DNA Damage and Type I Interferon Responses Imposes an Antiviral State That Attenuates Mouse Gammaherpesvirus Type 68 Replication in Primary Macrophages

Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Journal of Virology (Impact Factor: 4.65). 04/2012; 86(12):6899-912. DOI: 10.1128/JVI.07119-11
Source: PubMed

ABSTRACT DNA damage response (DDR) is a sophisticated cellular network that detects and repairs DNA breaks. Viruses are known to activate the DDR and usurp certain DDR components to facilitate replication. Intriguingly, viruses also inhibit several DDR proteins, suggesting that this cellular network has both proviral and antiviral features, with the nature of the latter still poorly understood. In this study we show that irradiation of primary murine macrophages was associated with enhanced expression of several antiviral interferon (IFN)-stimulated genes (ISGs). ISG induction in irradiated macrophages was dependent on type I IFN signaling, a functional DNA damage sensor complex, and ataxia-telangiectasia mutated kinase. Furthermore, IFN regulatory factor 1 was also required for the optimal expression of antiviral ISGs in irradiated macrophages. Importantly, DDR-mediated activation of type I IFN signaling contributed to increased resistance to mouse gammaherpesvirus 68 replication, suggesting that the coordinate regulation of DDR and type I IFN signaling may have evolved as a component of the innate immune response to virus infections.

Download full-text

Full-text

Available from: Vera L Tarakanova, Jul 17, 2015
0 Followers
 · 
87 Views
  • Source
    • "In fact, we detected high levels of ROS at 5 h postnucleofection (data not shown). In addition, it was recently described that macrophages exposed to g-radiation concomitant with DDR activation undergo a type I IFN response indicating crosstalk between these two pathways (Mboko et al., 2012). However, how IFN is connected with DDR is not understood. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The interferon (IFN) response, induced as a side effect after transfection of nucleic acids into mammalian cells, is known but inadequately described. We followed the IFN response, the fate of cells, and the possible mechanisms leading to this response in NIH3T3 mouse fibroblasts after DNA nucleofection. The gateway destination vector, phGf, and its derivatives encoding toxic and non-toxic variants of the minor structural proteins of polyomaviruses, VP2 and VP3, were used. DNA vector sequences induced in cells the production of high levels of IFN and the upregulation of the IFN-inducible genes, Mx-1, STAT1, IRF1, and IRF7. The IFN response was not restricted to phGf-derived plasmids. In nucleofected cells, upregulation of the modified γ-histone 2A.X indicating DNA damage and inhibition of cell proliferation were also observed. Although 3T3 cells expressed the Toll-like receptor-9 (TLR9) and vectors used for nucleofection contained unmethylated CpGs, signaling leading to IFN induction was found to be TLR9 independent. However, the early activation of nuclear factor-kappa B suggested the participation of this transcription factor in IFN induction. Surprisingly, in contrast to nucleofection, transfection using a cationic polymer induced only a poor IFN response. Together, the results point to a strong side effect of nucleofection.
    DNA and cell biology 06/2013; DOI:10.1089/dna.2012.1950
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gammaherpesviruses, such as Epstein-Barr virus (EBV), are ubiquitous cancer-associated pathogens that interact with DNA damage response, a tumor suppressor network. Chronic gammaherpesvirus infection and pathogenesis in a DNA damage response-insufficient host are poorly understood. Ataxia-Telangiectasia (A-T) is associated with insufficiency of Ataxia-Telangiectasia Mutated (ATM), a critical DNA damage response kinase. A-T patients display a pattern of anti-EBV antibodies suggestive of poorly controlled EBV replication; however, parameters of chronic EBV infection and pathogenesis in A-T population remain unclear. Here we demonstrate that chronic gammaherpesvirus infection is poorly controlled in an animal model of A-T. Intriguingly, in spite of a global increase in T cell activation and numbers in ATM wt and deficient mice in response to MHV68 infection, the generation of MHV68-specific immune response was altered in the absence of ATM. Our finding that ATM expression is necessary for an optimal adaptive immune response against gammaherpesvirus unveils an important connection between DNA damage response and immune control of chronic gammaherpesvirus infection, a connection that is likely to impact viral pathogenesis in an ATM insufficient host.
    Journal of Virology 09/2012; DOI:10.1128/JVI.00917-12
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate sensing of microbial components is well documented to occur at many cellular sites, including at the cell surface, in the cytosol, and in intracellular vesicles, but there is limited evidence of nuclear innate signaling. In this study we have defined the mechanisms of interferon regulatory factor-3 (IRF-3) signaling in primary human foreskin fibroblasts (HFF) infected with herpes simplex virus 1 (HSV-1) in the absence of viral gene expression. We found that the interferon inducible protein 16 (IFI16) DNA sensor, which is required for induction of IRF-3 signaling in these cells, is nuclear, and its localization does not change detectably upon HSV-1 d109 infection and induction of IRF-3 signaling. Consistent with the IFI16 sensor being nuclear, conditions that block viral DNA release from incoming capsids inhibit IRF-3 signaling. An unknown factor must be exported from the nucleus to activate IRF-3 through cytoplasmic STING, which is required for IRF-3 activation and signaling. However, when the viral ICP0 protein is expressed in the nucleus, it causes the nuclear relocalization and degradation of IFI16, inhibiting IRF-3 signaling. Therefore, HSV-1 infection is sensed in HFF by nuclear IFI16 upon release of encapsidated viral DNA into the nucleus, and the viral nuclear ICP0 protein can inhibit the process by targeting IFI16 for degradation. Together these results define a pathway for nuclear innate sensing of HSV DNA by IFI16 in infected HFF and document a mechanism by which a virus can block this nuclear innate response.
    Proceedings of the National Academy of Sciences 10/2012; DOI:10.1073/pnas.1211302109
Show more