Heparosan-Derived Heparan Sulfate/Heparin-Like Compounds: One Kind of Potential Therapeutic Agents

Institute of Biochemical and Biotechnological Drug & National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
Medicinal Research Reviews (Impact Factor: 8.13). 05/2013; 33(3). DOI: 10.1002/med.21263
Source: PubMed

ABSTRACT Heparan sulfate (HS) is a highly sulfated glycosaminoglycan and exists in all animal tissues. HS and heparin are very similar, except that heparin has higher level of sulfation and higher content of iduronic acid. Despite the fact that it is a century-old drug, heparin remains as a top choice for treating thrombotic disorders. Pharmaceutical heparin is derived from porcine intestine or bovine lung via a long supply chain. This supply chain is vulnerable to the contamination of animal pathogens. Therefore, new methods for manufacturing heparin or heparin-like substances devoid of animal tissues have been explored by many researchers, among which, modifications of heparosan, the capsular polysaccharide of Escherichia coli K5 strain, is one of the promising approaches. Heparosan has a structure similar to unmodified backbone of natural HS and heparin. It is feasible to obtain HS or heparin derivatives by modifying heparosan with chemical or enzymatic methods. These derivatives display different biological activities, such as anticoagulant, anti-inflammatory, anticancer, and antiviral activities. This review focuses on the recent studies of synthesis, activity, and structure-activity relationship of HS/heparin-like derivatives prepared from heparosan. © 2012 Wiley Periodicals, Inc. Med. Res. Rev., 00, No. 00, 1-28, 2012.

Download full-text


Available from: Fengshan Wang, Jul 21, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the effect and mechanisms of curdlan sulfate (CS3) on hepatitis B virus (HBV) infection and promoting immune response of the mice immunized with recombinant hepatitis B surface protein (HBsAg) were investigated. The results showed that CS3 could inhibit HBV infection of HepG2 and HepaRG cells, especially the process of HBV particle binding to the cell surfaces. The surface plasmon response (SPR) technology indicated that CS3 could bind with recombinant HBsAg and the binding ability depended on the content of sulfate groups on the polysaccharide chains. Co-administration of CS3 to BALB/c mice immunized with HBsAg significantly enhanced the influx of macrophages and dendritic cells in spleen, increased antigen-specific CD4(+) and CD8(+) cell numbers, and promoted splenocyte proliferation. The titer of HBsAg-specific antibodies was also augmented by use of CS3 as a vaccine adjuvant. The higher expression of interferon (IFN)-γ, lower expression of interleukin (IL)-4, and higher IgG2a/IgG1 ratio within the anti-HBsAg antibodies in mice immunized with HBsAg plus CS3 than those in mice receiving HBsAg alone indicated that CS3 induced a shift toward a Th1-biased immune response. These results presented that CS3 could be developed as an immunotherapy agent or vaccine adjuvant for HBV infection treatment or prevention.
    Carbohydrate Polymers 09/2014; 110C:446-455. DOI:10.1016/j.carbpol.2014.04.025 · 3.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycosaminoglycans (GAGs) are complex polysaccharides composed of hexosamine-containing disaccharide repeating units. The three most studied classes of GAGs, heparin/heparan sulfate, hyaluronan, and chondroitin/dermatan sulfate, are essential macromolecules. GAGs isolated from animal and microbial sources have been utilized therapeutically, but naturally occurring GAGs are extremely heterogeneous limiting further development of these agents. These molecules pose difficult targets to construct by classical organic syntheses due to the long chain lengths and complex patterns of modification by sulfation and epimerization. Chemoenzymatic synthesis, a process that employs exquisite enzyme catalysts and various defined precursors (e.g., uridine 5'-diphosphosphate-sugar donors, sulfate donors, acceptors, and oxazoline precursors), promises to deliver homogeneous GAGs. This review covers both theoretical and practical issues of GAG oligosaccharide and polysaccharide preparation as single molecular entities and in library formats. Even at this early stage of technology development, nearly monodisperse GAGs can be made with either natural or artificial structures.
    Glycobiology 03/2013; 23(7). DOI:10.1093/glycob/cwt016 · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Heparan sulfate (HS) is a polysaccharide that is ubiquitously expressed on the cell surface and in the extracellular matrix and interacts with a wide variety of proteins to mediate numerous biological and pathological functions, including inflammation. Areas covered: The structural diversity and the multiple biological roles of HS in inflammation are discussed. HS is involved in the recruitment and attachment of leukocytes to the inflamed epithelium, the activation of chemokines and the transmigration of leukocytes to the underlying target tissue. The endoglycosidase heparanase plays a key role in the above processes via the degradation of HS. HS mimetics that inhibit heparanase and block HS-binding proteins have been shown to inhibit inflammation in multiple animal models. Expert opinion: HS plays important roles in many stages of the inflammation process, in particular the regulation of leukocyte extravasation. Compounds that can inhibit HS-protein interactions thus have considerable potential as anti-inflammatory therapeutics capable of simultaneously interfering with multiple steps of the inflammation process. There are a number of such compounds in various stages of clinical development for cancer, which should also find applications in inflammatory illnesses.
    Expert Opinion on Therapeutic Targets 06/2013; DOI:10.1517/14728222.2013.811491 · 4.90 Impact Factor