Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro.

Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
Environmental Health Perspectives (Impact Factor: 7.26). 04/2012; 120(7):1029-35. DOI: 10.1289/ehp.1104689
Source: PubMed

ABSTRACT Endocrine-disrupting chemicals (EDCs) are widely found in the environment. Estrogen-like activity is attributed to EDCs, such as bisphenol A (BPA), bisphenol AF (BPAF), and zearalenone (Zea), but mechanisms of action and diversity of effects are poorly understood.
We used in vitro models to evaluate the mechanistic actions of BPA, BPAF, and Zea on estrogen receptor (ER) α and ERβ.
We used three human cell lines (Ishikawa, HeLa, and HepG2) representing three cell types to evaluate the estrogen promoter activity of BPA, BPAF, and Zea on ERα and ERβ. Ishikawa/ERα stable cells were used to determine changes in estrogen response element (ERE)-mediated target gene expression or rapid action-mediated effects.
The three EDCs showed strong estrogenic activity as agonists for ERα in a dose-dependent manner. At lower concentrations, BPA acted as an antagonist for ERα in Ishikawa cells and BPAF acted as an antagonist for ERβ in HeLa cells, whereas Zea was only a partial antagonist for ERα. ERE-mediated activation by BPA and BPAF was via the AF-2 function of ERα, but Zea activated via both the AF-1 and AF-2 functions. Endogenous ERα target genes and rapid signaling via the p44/42 MAPK pathway were activated by BPA, BPAF, and Zea.
BPA and BPAF can function as EDCs by acting as cell type-specific agonists (≥ 10 nM) or antagonists (≤ 10 nM) for ERα and ERβ. Zea had strong estrogenic activity and activated both the AF-1 and AF-2 functions of ERα. In addition, all three compounds induced the rapid action-mediated response for ERα.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Halogenated bisphenol A (H-BPAs), widely used in industrial production, have been identified in various environmental matrices and detected in human serum and breast milk. The persistence and prevalence of H-BPAs in the environment underscore the need to in-depth understand their adverse effects to humans and other organisms. In the present study, zebrafish embryos/larvae were used as models to investigate the developmental toxicities of three H-BPAs, namely tetrabromobisphenol A (TBBPA), tetrachlorobisphenol A (TCBPA), and bisphenol AF (BPAF). The half lethal concentration (LC50) values indicated that the rank order of toxicities of the chemicals were TCBPA>TBBPA>BPAF. Three H-BPAs exposure resulted in a variety of developmental lesions in the embryos/larvae, such as a delay in time to hatch, edema, and hemorrhage. The estrogenic activities of H-BPAs were determined by means of in vivo vitellogenin (vtg) assay and in vitro MVLN assay. Here only BPAF specifically shows a stronger estrogenic activity than BPA both in in vivo and in vitro. These data suggest that TCBPA, TBBPA, and BPAF are more potent toxicants than BPA, and indicate that further research of the mechanisms on their toxicities is required.
    Chemosphere 10/2014; 112C:275-281. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol AF (BPAF) is widely used in food-contact products, electronic devices, and as a cross-linking reagent in fluoroelastomers. There are growing concerns about its toxicity and endocrine-disrupting effects based on its structural similarity with bisphenol A (BPA). The endocrine-disrupting effects of BPAF were studied by exposing 2-month-old zebrafish to 0, 0.05, 0.25, or 1 mg/L BPAF for 28 days and evaluating the effect on growth, histopathology, hormone levels, enzyme activity, and gene expression. The overall fitness was not significantly affected. There were no apparent alterations in the gills and intestine tissues of both sexes after BPAF exposure. However, exposure to 1 mg/L BPAF caused damage to the liver in the male fish, characterized by hepatocellular swelling and vacuolation. There was no obvious effect in the liver of female fish, suggesting that the hepatic toxicity of BPAF is gender dependent. Gonadal examination indicated that exposure to 1 mg/L BPAF caused induction of acellular areas in the testis and retardation of oocyte development in the ovary. BPAF exposure increased free triiodothyronine levels of females in a dose-dependent manner. In males, the testosterone levels decreased in a concentration-dependent manner. In contrast, estradiol levels increased in a concentration-dependent manner and were significantly higher in males exposed to 1 mg/L BPAF compared with the controls. In females, 0.05 and 0.25 mg/L BPAF caused an increase in testosterone levels. Furthermore, the estradiol levels increased in females exposed to 0.05 and 1 mg/L. We observed an upregulation of hepatic vitellogenin in both sexes and significantly higher levels in males exposed to 1 mg/L BPAF and females exposed to 0.25 mg/L BPAF, suggesting that BPAF has an estrogenic activity. Our results indicate that BPAF is an endocrine-disrupting chemical that exerts reproductive toxicity and estrogenic effects on zebrafish. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014.
    Environmental Toxicology 09/2014; · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microglial activation has been reported to play an important role in neurodegenerative diseases by producing pro-inflammatory cytokines. Bisphenol A (BPA, 2,2-bis (4-hydroxyphenyl) propane), known as a ubiquitous endocrine-disrupting chemical, is reported to perform both mimic- and anti-estrogen properties; however, whether it affects cytokine production or immune response in central nervous system remains unclear. The present study was aimed to explore whether BPA was involved in inflammatory action and to investigate the potential mechanisms in microglial cells. BV2, the murine microglial cell line, was used in the present work as the cell model. BPA-associated morphologic changes, cytokine responses, and signaling events were examined using immunofluorescence analysis, real-time PCR, enzyme-linked immunosorbent assay, and western blot. Our results indicated that BPA increased BV2 cells activation and simultaneously elevated tumor necrosis factor-α and interleukin 6 expression, which could be partially reversed by estrogen receptor antagonist, ICI182780. In addition, the c-Jun N-terminal protein kinase (JNK) inhibitor (SP600125), rather than ERK1/2 blocker (PD98059), displayed anti-inflammatory properties on BPA-elicited cytokine responses. Moreover, the inflammatory transcription factor NF-κB was specifically activated by BPA as well. These results, taken together, suggested that BPA may have functional effects on the response of microglial cell activation via, in part, the estrogen receptor, JNK, ERK mitogen-activated protein kinase, and NF-κB signaling pathways with its subsequent influence on pro-inflammatory action.
    Inflammation 07/2014; · 1.92 Impact Factor

Full-text (3 Sources)

Available from
May 21, 2014