Differential Estrogenic Actions of Endocrine-Disrupting Chemicals Bisphenol A, Bisphenol AF, and Zearalenone through Estrogen Receptor α and β in Vitro

Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
Environmental Health Perspectives (Impact Factor: 7.98). 04/2012; 120(7):1029-35. DOI: 10.1289/ehp.1104689
Source: PubMed

ABSTRACT Endocrine-disrupting chemicals (EDCs) are widely found in the environment. Estrogen-like activity is attributed to EDCs, such as bisphenol A (BPA), bisphenol AF (BPAF), and zearalenone (Zea), but mechanisms of action and diversity of effects are poorly understood.
We used in vitro models to evaluate the mechanistic actions of BPA, BPAF, and Zea on estrogen receptor (ER) α and ERβ.
We used three human cell lines (Ishikawa, HeLa, and HepG2) representing three cell types to evaluate the estrogen promoter activity of BPA, BPAF, and Zea on ERα and ERβ. Ishikawa/ERα stable cells were used to determine changes in estrogen response element (ERE)-mediated target gene expression or rapid action-mediated effects.
The three EDCs showed strong estrogenic activity as agonists for ERα in a dose-dependent manner. At lower concentrations, BPA acted as an antagonist for ERα in Ishikawa cells and BPAF acted as an antagonist for ERβ in HeLa cells, whereas Zea was only a partial antagonist for ERα. ERE-mediated activation by BPA and BPAF was via the AF-2 function of ERα, but Zea activated via both the AF-1 and AF-2 functions. Endogenous ERα target genes and rapid signaling via the p44/42 MAPK pathway were activated by BPA, BPAF, and Zea.
BPA and BPAF can function as EDCs by acting as cell type-specific agonists (≥ 10 nM) or antagonists (≤ 10 nM) for ERα and ERβ. Zea had strong estrogenic activity and activated both the AF-1 and AF-2 functions of ERα. In addition, all three compounds induced the rapid action-mediated response for ERα.

Download full-text


Available from: Kenneth S Korach, Sep 26, 2015
26 Reads
  • Source
    • "Since the 1930s, BPA has been known to possess estrogenic activity (Dodds and Lawson 1936). In vitro studies have demonstrated that BPA can interact with both estrogen receptor subtypes (ERα and ERβ), leading to estrogenic effects, or it can act in competition with 17β-estradiol to exert antiestrogenic effects (Gould et al. 1998; Kuiper et al. 1997; Li et al. 2012). In addition, BPA has also been shown in vitro to act as an androgen receptor (AR) antagonist (Bonefeld- Jørgensen et al. 2007; Kitamura et al. 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Few human studies have examined bisphenol A (BPA) exposure in relation to semen quality and reproductive hormones in men, and results are divergent. Objectives: We examined associations between urinary BPA concentration and reproductive hormones, as well as semen quality, in young men from the general population. Methods: Our study population consisted of 308 young men from the general population. Urinary BPA concentration was measured by isotope dilution TurboFlow-liquid chromatography-tandem mass spectrometry. We used multiple linear regression analysis to estimate associations between BPA concentration and reproductive hormones and semen quality, adjusting for confounding factors. Results: We found that 98% of the men had detectable urinary levels of BPA. Median (5th-95th percentiles) BPA concentration was 3.25 ng/mL (0.59-14.89 ng/mL). Men with BPA concentrations above the lowest quartile had higher concentrations of serum testosterone, luteinizing hormone (LH), estradiol, and free testosterone compared with the lowest quartile (ptrend ≤ 0.02). Men in the highest quartile of BPA excretion had on average 18% higher total testosterone (95% CI: 8, 28%), 22% higher LH (95% CI: 6, 39%), and 13% higher estradiol (95% CI: 4, 24%) compared with lowest quartile. Men in the highest quartile of BPA also had significantly lower percentage progressive motile spermatozoa compared with men in the lowest quartile (-6.7 percentage points, 95% CI: -11.76, -1.63). BPA was not associated with other semen parameters. Adjusting for dietary patterns did not influence the results. Conclusions: The pattern of associations between BPA and reproductive hormones could indicate an antiandrogenic or antiestrogenic effect, or both, of BPA on the hypothalamic-pituitary-gonadal hormone feedback system, possibly through a competitive inhibition at the receptor level. However, additional research is needed to confirm our findings and to further test the suggested potential mechanisms.
    Environmental Health Perspectives 05/2014; 122(5):478-484. DOI:10.1289/ehp.1307309 · 7.98 Impact Factor
  • Source
    • "BPA appears to induce increases in MAPK phosphorylation, this gain being more important at lower doses (data not shown). These results on HepaRG cells are consistent with those found on other human cell lines (Izumi et al., 2011; Li et al., 2012; Park et al., 2009; Xu et al., 2014). The weak decrease in ERK1/2 phosphorylation observed in response to high concentrations of BPS allows us to suspect its ability to disrupt the MAPK pathway which has already been described in a rat pituitary cell line (Viñas and Watson, 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: For several decades, people have been in contact with bisphenol A (BPA) primarily through their diet. Nowadays it is gradually replaced by an analogue, bisphenol S (BPS). In this study, we compared the effects of these two bisphenols in parallel with the positive control diethylstilbestrol (DES) on different hepatocyte cell lines. Using a cellular impedance system we have shown that BPS is less cytotoxic than BPA in acute and chronic conditions. We have also demonstrated that, contrary to BPA, BPS is not able to induce an increase in intracellular lipid and does not activate the PXR receptor which is known to be involved in part, in this process. In parallel, it failed to modulate the expression of CYP3A4 and CYP2B6, the drug transporter ABCB1 and other lipid metabolism genes (FASN, PLIN). However, it appears to have a weak effect on GSTA4 protein expression and on the Erk1/2 pathway. In conclusion, in contrast to BPA, BPS does not appear to induce the metabolic syndrome that may lead to non-alcoholic fatty liver disease (NAFLD), in vitro. Although we have to pay special attention to BPS, its use could be less dangerous concerning this toxicological endpoint for human health.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 04/2014; 70. DOI:10.1016/j.fct.2014.04.011 · 2.90 Impact Factor
  • Source
    • "BPAF has been shown to induce estrogenic actions via binding to estrogen receptor (ER) [6], [7]. BPAF strongly binds to both ERα and ERβ as detected by radioligand binding assay. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol AF (BPAF)-induced transcriptional activity has been evaluated by luciferase reporter assay. However, the molecular mechanism of BPAF-induced endogenous transcription in human breast cancer cells has not been fully elucidated. In the present study, we investigated the effect and mechanism of BPAF-induced endogenous transcription detected by real-time PCR in human breast cancer cells. We found that BPAF stimulated transcription of estrogen responsive genes, such as trefoil factor 1 (TFF1), growth regulation by estrogen in breast cancer 1 (GREB1) and cathepsin D (CTSD), through dose-dependent and time-dependent manners in T47D and MCF7 cells. Gene-silencing of ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER) by small interfering RNA revealed that BPAF-induced endogenous transcription was dependent on ERα and GPER, implying both genomic and nongenomic pathways might be involved in the endogenous transcription induced by BPAF. ERα-mediated gene transcription was further confirmed by inhibition of ER activity using ICI 182780 in ERα-positive T47D and MCF7 cells as well as overexpression of ERα in ERα-negative MDA-MB-231 breast cancer cells. Moreover, we utilized Src tyrosine kinase inhibitor PP2 and two MEK inhibitors PD98059 and U0126 to elucidate the rapid nongenomic activation of Src/MEK/ERK1/2 cascade on endogenous transcription. Our data showed that BPAF-induced transcription could be significantly blocked by PP2, PD98059 and U0126, suggesting activation of ERK1/2 was also required to regulate endogenous transcription. Taken together, these results indicate that BPAF-induced endogenous transcription of estrogen responsive genes is mediated through both genomic and nongenomic pathways involving the ERα and ERK1/2 activation in human breast cancer cells.
    PLoS ONE 04/2014; 9(4):e94725. DOI:10.1371/journal.pone.0094725 · 3.23 Impact Factor
Show more