Fluconazole susceptibility and ERG11 gene expression in vaginal candida species isolated from Lagos Nigeria.

Department of Microbiology, University of Jos, Nigeria.
International Journal of Molecular Epidemiology and Genetics 01/2012; 3(1):84-90.
Source: PubMed

ABSTRACT Fluconazole resistance is an important type of resistance in Candida because in most countries, fluconazole is the drug of choice for vulvovaginal candidiasis. Candida species resist fluconazole by various mechanisms but there is paucity of data on these in our environment. Such mechanisms include among others, over-expression of the ERG11 gene, which codes for synthesis of the target enzymes in the fungus. The aim of this study was to screen Candida spp. resistant to fluconazole for the expression of ERG11 gene. Fluconazole susceptibility test was performed on 28 clinical strains of Candida species previously obtained from students of a School of Nursing in Lagos, Nigeria. They were identified by API Candida, CHROMagar candida and germ tube test. Using 25 mcg discs, fluconazole susceptibility was determined by the disc diffusion method and results were interpreted in accordance with the Clinical Laboratory Standard Institute (CLSI) criteria; sensitive (S), resistant (R) and susceptible dose dependent (SDD). The R and SDD isolates were subsequently evaluated for the presence of ERG11 gene. Of the 28 clinical isolates, 14 were identified as C. albicans and six as C. tropicalis. The remaining isolates were identified as C. glabrata (2), C. famata (2) C. kefyr (2) one each of C. parapsilosis and C. guilliermondii respectively. In this study, 18 were susceptible (S) to fluconazole, eight were SDD and two were resistant to the antifungal agent. Out of the 14 C. albicans isolates, 12 were susceptible, one showed high level resistance and similar number showed susceptible dose dependence. ERG11 was detected in three susceptible dose dependent Candida species. This analysis demonstrates that susceptible dose dependence should not be overlooked as it may be associated with the presence of ERG11 gene and resistance to fluconazole. There is a need to consider routine antifungal susceptibility testing for Candida species causing vulvovaginitis.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function.Wefurther demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of allERGgenes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections
    Journal of Biological Chemistry 12/2013; 288:35466-35477. · 4.65 Impact Factor

Full-text (3 Sources)

Available from
May 31, 2014