Article

Data sharing in neuroimaging research

Neurospin, Commissariat à l'Energie Atomique et aux Energies Alternatives Gif-sur-Yvette, France.
Frontiers in Neuroinformatics 04/2012; 6:9. DOI: 10.3389/fninf.2012.00009
Source: PubMed

ABSTRACT Significant resources around the world have been invested in neuroimaging studies of brain function and disease. Easier access to this large body of work should have profound impact on research in cognitive neuroscience and psychiatry, leading to advances in the diagnosis and treatment of psychiatric and neurological disease. A trend toward increased sharing of neuroimaging data has emerged in recent years. Nevertheless, a number of barriers continue to impede momentum. Many researchers and institutions remain uncertain about how to share data or lack the tools and expertise to participate in data sharing. The use of electronic data capture (EDC) methods for neuroimaging greatly simplifies the task of data collection and has the potential to help standardize many aspects of data sharing. We review here the motivations for sharing neuroimaging data, the current data sharing landscape, and the sociological or technical barriers that still need to be addressed. The INCF Task Force on Neuroimaging Datasharing, in conjunction with several collaborative groups around the world, has started work on several tools to ease and eventually automate the practice of data sharing. It is hoped that such tools will allow researchers to easily share raw, processed, and derived neuroimaging data, with appropriate metadata and provenance records, and will improve the reproducibility of neuroimaging studies. By providing seamless integration of data sharing and analysis tools within a commodity research environment, the Task Force seeks to identify and minimize barriers to data sharing in the field of neuroimaging.

Download full-text

Full-text

Available from: Jean-Baptiste Poline, Jul 06, 2015
0 Followers
 · 
191 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NeuroVault.org is dedicated to storing outputs of analyses in the form of statistical maps, parcellations and atlases, a unique strategy that contrasts with most neuroimaging repositories that store raw acquisition data or stereotaxic coordinates. Such maps are indispensable for performing meta-analyses, validating novel methodology, and deciding on precise outlines for regions of interest (ROIs). NeuroVault is open to maps derived from both healthy and clinical populations, as well as from various imaging modalities (sMRI, fMRI, EEG, MEG, PET, etc.). The repository uses modern web technologies such as interactive web-based visualization, cognitive decoding, and comparison with other maps to provide researchers with efficient, intuitive tools to improve the understanding of their results. Each dataset and map is assigned a permanent Universal Resource Locator (URL), and all of the data is accessible through a REST Application Programming Interface (API). Additionally, the repository supports the NIDM-Results standard, and has the ability to parse outputs from popular FSL and SPM software packages to automatically extract relevant metadata. This ease of use, modern web-integration, and pioneering functionality holds promise to improve the workflow for making inferences about and sharing whole-brain statistical maps. Copyright © 2015 Elsevier Inc. All rights reserved.
    NeuroImage 04/2015; DOI:10.1016/j.neuroimage.2015.04.016 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The XNAT informatics platform is an open source data management tool used by biomedical imaging researchers around the world. An important feature of XNAT is its highly extensible architecture: users of XNAT can add new data types to the system to capture the imaging and phenotypic data generated in their studies. Until recently, XNAT has had limited capacity to broadcast the meaning of these data extensions to users, other XNAT installations, and other software. We have implemented a data dictionary service for XNAT, which is currently being used on ConnectomeDB, the Human Connectome Project (HCP) public data sharing website. The data dictionary service provides a framework to define key relationships between data elements and structures across the XNAT installation. This includes not just core data representing medical imaging data or subject or patient evaluations, but also taxonomical structures, security relationships, subject groups, and research protocols. The data dictionary allows users to define metadata for data structures and their properties, such as value types (e.g., textual, integers, floats) and valid value templates, ranges, or field lists. The service provides compatibility and integration with other research data management services by enabling easy migration of XNAT data to standards-based formats such as the Resource Description Framework (RDF), JavaScript Object Notation (JSON), and Extensible Markup Language (XML). It also facilitates the conversion of XNAT's native data schema into standard neuroimaging vocabularies and structures.
    Frontiers in Neuroinformatics 07/2014; 8:65. DOI:10.3389/fninf.2014.00065
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The last two decades have seen an unprecedented development of human brain mapping approaches at various spatial and temporal scales. Together, these have provided a large fundus of information on many different aspects of the human brain including the micro- and macrostructural segregation, regional specialization of function, connectivity, and temporal dynamics. Atlases are central in order to integrate such diverse information in a topographically meaningful way. It is noteworthy, that the brain mapping field has been developed along several major lines such as structure vs. function, postmortem vs. in vivo, individual features of the brain vs. population-based aspects, or slow vs. fast dynamics. In order to understand human brain organization, however, it seems inevitable that these different lines are integrated and combined into a multimodal human brain model. To this aim, we held a workshop to determine the constraints of a multi-modal human brain model that are needed to enable (i) an integration of different spatial and temporal scales and data modalities into a common reference system, and (ii) efficient data exchange and analysis. As detailed in this report, to arrive at fully interoperable atlases of the human brain will still require much work at the frontiers of data acquisition, analysis, and representation. Among them, the latter may provide the most challenging task, in particular when it comes to representing features of vastly different scales of space, time and abstraction. The potential benefits of such endeavor, however, clearly outweigh the problems, as only such kind of multi-modal human brain atlas may provide a starting point from which the complex relationships between structure, function, and connectivity may be explored.
    NeuroImage 06/2014; 99. DOI:10.1016/j.neuroimage.2014.06.010 · 6.13 Impact Factor