Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver.

Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
The Journal of Lipid Research (Impact Factor: 4.73). 04/2012; 53(6):1080-92. DOI: 10.1194/jlr.M023382
Source: PubMed

ABSTRACT The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.


Available from: Blanka Kucejova, Jun 12, 2015
  • Clinical Lipidology 11/2014; 9(5):553-569. DOI:10.2217/clp.14.37 · 0.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonalcoholic steatohepatitis has become one of the most common liver-related health problems. This condition has been linked to an unhealthy diet and weight gain, but it can also be observed in nonobese people. The standard of care is represented by the lifestyle intervention. However, because this approach has several limitations, such as a lack of compliance, the use of many drugs has been proposed. The first-line pharmacological choices are vitamin E and pioglitazone, both showing a positive effect on transaminases, fat accumulation, and inflammation. Nevertheless, vitamin E has no proven effect on fibrosis and on long-term morbidity and mortality and pioglitazone has a negative impact on weight. Other drugs have been studied such as metformin, ursodeoxycholic acid, statins, pentoxiphylline, and orlistat with only partially positive results. Among the emerging treatments, telmisartan is particularly interesting as it seems to have an impact on insulin resistance, liver steatosis, inflammation, and fibrosis. However, the pathogenesis of steatohepatitis is highly complex and is determined by different parallel hits; indeed, the association of different drugs that act on various levels has been suggested. In conclusion, lifestyle intervention should be optimised and the associations of different drugs should be tested in large studies with long-term outcomes.
    Gastroenterology Research and Practice 03/2015; 2015. DOI:10.1155/2015/732870 · 1.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells have evolved a highly integrated network of mechanisms to coordinate cellular survival/death, proliferation, differentiation, and repair with metabolic states. It is therefore not surprising that proteins with canonical roles in cell death/survival also modulate nutrient and energy metabolism and vice versa. The finding that many BCL-2 (B cell lymphoma 2) proteins reside at mitochondria or can translocate to this organelle has long motivated investigation into their involvement in normal mitochondrial physiology and metabolism. These endeavors have led to the discovery of homeostatic roles for BCL-2 proteins beyond apoptosis. We predominantly focus on recent findings that link select BCL-2 proteins to carbon substrate utilization at the level of mitochondrial fuel choice, electron transport, and metabolite import independent of their cell death regulatory function. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Trends in Endocrinology and Metabolism 03/2015; 26(4). DOI:10.1016/j.tem.2015.02.004 · 8.87 Impact Factor