Article

Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy

Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
AJP Renal Physiology (Impact Factor: 4.42). 04/2012; 302(12):F1595-605. DOI: 10.1152/ajprenal.00617.2011
Source: PubMed

ABSTRACT Vitamin D slows the progression of chronic kidney disease. Furthermore, activators of vitamin D receptors (VDR) have suppressant effects on the renin-angiotensin system, as well as anti-inflammatory and antifibrotic actions. This study aimed to evaluate the cytoprotective effects of paricalcitol, a VDR activator, at the mitochondrial level using an obstructive nephropathy model [unilateral ureteral obstruction (UUO)]. Rats subjected to UUO and controls were treated daily with vehicle or paricalcitol. The control group underwent a sham surgery. The treatment was done for 15 days (30 ng/kg). The following were determined: biochemical parameters; fibrosis; apoptosis; mitochondrial morphology; VDR, AT(1) receptor, and NADPH oxidase 4 expression; and NADPH oxidase activity (in total and in mitochondrial fractions from the renal cortex). VDR activation prevented fibrosis (20 ± 5 vs. 60 ± 10%) and the number of TUNEL-positive apoptotic cells (10 ± 3 vs. 25 ± 4) in UUO. Biochemical, histological, and molecular studies suggest mitochondrial injury. Electron microscopy revealed in UUO electronically luminous material in the nucleus. Some mitochondria were increased in size and contained dilated crests and larger than normal spaces in their interiors. These changes were not present with paricalcitol treatment. Additionally, high AT(1)-receptor mRNA and NADPH activity was reverted in mitochondrial fractions from obstructed paricalcitol-treated animals (0.58 ± 0.06 vs. 0.95 ± 0.05 relative densitometry units and 9,000 ± 800 vs. 15,000 ± 1,000 relative fluorescence units·μg protein(-1)·min(-1), respectively). These changes were consistent with an improvement in VDR expression (0.75 ± 0.05 vs. 0.35 ± 0.04 relative densitometry units). These results suggest that paricalcitol confers a protective effect and reveal, as well, a possible AT(1) receptor-dependent protective effect that occurs at the mitochondrial level.

1 Follower
 · 
135 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock proteins (HSP) are a shock induced family of proteins, whose most prominent members are a group of molecules dedicated to maintaining the function of other proteins. Interestingly, after being exposed to heat shock typical proinflammatory agonists modify the heat shock-induced transcriptional program and expression of HSP genes, suggesting a complex reciprocal regulation between the inflammatory pathway and that of the heat shock response. The specific task of Heat shock protein 70 (Hsp 70), the most widespread and highly conserved HSP, is to protect against inflammation through multiple mechanisms. So, the expression of immune reactivity to Hsp70 in the kidney could be a cause of hypertension. Hsp70 modulates inflammatory response, as well as down-regulates the nuclear factor kappa-light-chain-enhancer of activated B cells. Also, a decreased expression of renal Hsp70 may contribute to activate the toll-like receptor 4-initiating inflammatory signal pathway. In addition, several studies have revealed that Hsp70 is involved in the regulation of Angiotensin II, a peptide with pro-inflammatory activity. Increased inflammatory response is generated by nicotinamide adenine dinucleotide phosphate oxidase, following activation by Angiotensin II. Interestingly, Hsp70 protects the renal epithelium by modulation of nicotinamide adenine dinucleotide phosphate oxidase, a fundamental step in the pro-inflammatory mechanism. This article aims to summarize our understanding about possible mechanisms improving the renal inflammatory process linked to Hsp70 expression. Finally, from a therapeutic point of view, the notion of antiinflammatory tools regulating Hsp70 could directly affect the inflammatory renal disease.
    Inflammation & Allergy - Drug Targets (Formerly ?Current Drug Targets - Inflammation & Allergy) 08/2014; 13(4):1-6. DOI:10.2174/1871528113666140805125632
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are the primary generators of cellular reactive oxygen species (ROS); their pathophysiological roles in hypertension and insulin resistance are but imperfectly understood. Mitochondrial dysfunction has been linked to the etiologies of many complex diseases, but many other factors, including the upregulation of the renin-angiotensin system (RAS) and vitamin D deficiency, have also been implicated in hypertension pathogenesis. Hypertension resulting from the disruption of the RAS contributes to the risk of cardiovascular disease. Likewise, experimental and clinical evidence indicate that RAS stimulation and low vitamin D levels are inversely related and represent risk factors associated with the pathogenesis of hypertension. Furthermore, RAS activation induces insulin resistance, resulting in increases in ROS levels. High levels of ROS are harmful to cells, having the potential to trigger both mitochondrial-mediated apoptosis and the degradation of the mitochondrial DNA. Diabetes risk is also associated with high levels of oxidative stress; taking vitamin D, however, may reduce that risk. The finding that mitochondria possess both a functional RAS and vitamin D receptors is the starting point for improving our understanding of the interaction of mitochondria and chronic disease states, which understanding should lead to decreases in the chronic disease burden attributable to hypertension, diabetes, or both.
    Current Hypertension Reports 12/2014; 504(17). DOI:10.1007/s11906-014-0504-2 · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox) homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS). A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). Ang II binds with equal affinity to two main angiotensin receptors-type 1 (AT1R) and type 2 (AT2R). The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS). This Ang II-AT1R-NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell. AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a) report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b) discuss the effect of age-related activation of RAS on generation of free radicals.
    Frontiers in Physiology 11/2014; 5:439. DOI:10.3389/fphys.2014.00439

Full-text

Download
72 Downloads
Available from
May 31, 2014