Pinceau Organization in the Cerebellum Requires Distinct Functions of Neurofascin in Purkinje and Basket Neurons during Postnatal Development

Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7545, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.34). 04/2012; 32(14):4724-42. DOI: 10.1523/JNEUROSCI.5602-11.2012
Source: PubMed


Basket axon collaterals synapse onto the Purkinje soma/axon initial segment (AIS) area to form specialized structures, the pinceau, which are critical for normal cerebellar function. Mechanistic details of how the pinceau become organized during cerebellar development are poorly understood. Loss of cytoskeletal adaptor protein Ankyrin G (AnkG) results in mislocalization of the cell adhesion molecule Neurofascin (Nfasc) at the Purkinje AIS and abnormal organization of the pinceau. Loss of Nfasc in adult Purkinje neurons leads to slow disorganization of the Purkinje AIS and pinceau morphology. Here, we used mouse conditional knock-out techniques to show that selective loss of Nfasc, specifically in Purkinje neurons during early development, prevented maturation of the AIS and resulted in loss of Purkinje neuron spontaneous activity and pinceau disorganization. Loss of Nfasc in both Purkinje and basket neurons caused abnormal basket axon collateral branching and targeting to Purkinje soma/AIS, leading to extensive pinceau disorganization, Purkinje neuron degeneration, and severe ataxia. Our studies reveal that the Purkinje Nfasc is required for AIS maturation and for maintaining stable contacts between basket axon terminals and the Purkinje AIS during pinceau organization, while the basket neuron Nfasc in combination with Purkinje Nfasc is required for proper basket axon collateral outgrowth and targeting to Purkinje soma/AIS. Thus, cerebellar pinceau organization requires coordinated mechanisms involving specific Nfasc functions in both Purkinje and basket neurons.

Download full-text


Available from: Claire Piochon,

Click to see the full-text of:

Article: Pinceau Organization in the Cerebellum Requires Distinct Functions of Neurofascin in Purkinje and Basket Neurons during Postnatal Development

6.04 MB

See full-text
    • "Interaction partners of neurofascin at the AIS are represented by components of the extracellular matrix including tenascin-R and brevican (Hedstrom et al. 2007; Bruckner et al. 2006; Volkmer et al. 1998). Alternatively, neurofascin may homophilically interact with neurofascin as suggested for basket cell terminals (Buttermore et al. 2012; Pruss et al. 2004). NF186 was also discussed to contribute to the stabilisation of nodal complexes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuronal cell adhesion molecule neurofascin is expressed in highly complex temporally and spatially regulated patterns. Accordingly, many different functions have been described including control of neurite outgrowth, clustering of protein complexes at the axon initial segments as well as at the nodes of Ranvier and axoglial contact formation at paranodal segments. At the molecular level, neurofascin provides a link between extracellular interactions of many different interaction partners and cytoskeletal components or signal transduction. Such interactions are subject to intimate regulation by alternative splicing and posttranslational modification. The versatile functional aspects of neurofascin interactions pose it at a central position for the shaping and maintenance of neural circuitry and synaptic contacts which are implicated in nervous system disorders.
    Advances in neurobiology 10/2014; 8:231-47.
  • Source
    • "They neither form paranodal adhesion junctions nor nodal complexes [11]. Selective genetic ablation of Nfasc186 during development results in nodal disorganization, including loss of Na(v) channel and ankyrin-G (AnkG) enrichment at nodes [12], as well as neuron degeneration and severe ataxia [16]. After completion of development, neurofascin is believed to anchor key elements of the adult AIS complex [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children.
    PLoS ONE 01/2014; 9(1):e85393. DOI:10.1371/journal.pone.0085393 · 3.23 Impact Factor
  • Source
    • "The following antisera were previously described: guinea pig and rabbit anti-Caspr [7,10,30], guinea pig anti-NF186 and guinea pig anti-pan Neurofascin [10,30], guinea pig anti-4.1B antibodies [14], and mouse anti-Calbindin [31]. Other primary antibodies used include the following: mouse anti- Kv1.2 (University of California Davis/NIH NeuroMab Facility; K14/16), mouse anti-CASK (University of California Davis/NIH NeuroMab Facility; K56A/50), mouse anti-Ankyrin G (University of California Davis/NIH NeuroMab Facility; N106/36), mouse anti-Neurofilament H (Chemicon, MAB1623), rabbit anti-alpha-Tubulin (Cell Signaling #2144) and anti-Myelin Basic Protein (Abcam, SMI-94). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Myelinated axons are organized into distinct subcellular and molecular regions. Without proper organization, electrical nerve conduction is delayed, resulting in detrimental physiological outcomes. One such region is the paranode where axo-glial septate junctions act as a molecular fence to separate the sodium (Na+) channel-enriched node from the potassium (K+) channel-enriched juxtaparanode. A significant lack of knowledge remains as to cytoskeletal proteins which stabilize paranodal domains and underlying cytoskeleton. Whirlin (Whrn) is a PDZ domain-containing cytoskeletal scaffold whose absence in humans results in Usher Syndromes or variable deafness-blindness syndromes. Mutant Whirlin (Whrn) mouse model studies have linked such behavioral deficits to improper localization of critical transmembrane protein complexes in the ear and eye. Until now, no reports exist about the function of Whrn in myelinated axons. RT-PCR and immunoblot analyses revealed expression of Whrn mRNA and Whrn full-length protein, respectively, in several stages of central and peripheral nervous system development. Comparing wild-type mice to Whrn knockout (Whrn-/-) mice, we observed no significant differences in the expression of standard axonal domain markers by immunoblot analysis but observed and quantified a novel paranodal compaction phenotype in 4 to 8 week-old Whrn-/- nerves. The paranodal compaction phenotype and associated cytoskeletal disruption was observed in Whrn-/- mutant sciatic nerves and spinal cord fibers from early (2 week-old) to late (1 year-old) stages of development. Light and electron microscopic analyses of Whrn knockout mice reveal bead-like swellings in cerebellar Purkinje axons containing mitochondria and vesicles by both. These data suggest that Whrn plays a role in proper cytoskeletal organization in myelinated axons. Domain organization in myelinated axons remains a complex developmental process. Here we demonstrate that loss of Whrn disrupts proper axonal domain organization. Whrn likely contributes to the stabilization of paranodal myelin loops and axonal cytoskeleton through yet unconfirmed cytoskeletal proteins. Paranodal abnormalities are consistently observed throughout development (2wk-1 yr) and similar between central and peripheral nervous systems. In conclusion, our observations suggest that Whrn is not required for the organization of axonal domains, but once organized, Whrn acts as a cytoskeletal linker to ensure proper paranodal compaction and stabilization of the axonal cytoskeleton in myelinated axons.
    BMC Neuroscience 09/2013; 14(1):96. DOI:10.1186/1471-2202-14-96 · 2.67 Impact Factor
Show more