A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly.

Trypanosome Cell Biology Unit, Institut Pasteur & CNRS, URA 2581, 25 rue du Docteur Roux, 75015 Paris, France.
Development (Impact Factor: 6.27). 04/2012; 139(10):1842-50. DOI: 10.1242/dev.072611
Source: PubMed

ABSTRACT African trypanosomes are flagellated protozoan parasites that cause sleeping sickness and are transmitted by the bite of the tsetse fly. To complete their life cycle in the insect, trypanosomes reach the salivary glands and transform into the metacyclic infective form. The latter are expelled with the saliva at each blood meal during the whole life of the insect. Here, we reveal a means by which the continuous production of infective parasites could be ensured. Dividing trypanosomes present in the salivary glands of infected tsetse flies were monitored by live video-microscopy and by quantitative immunofluorescence analysis using molecular markers for the cytoskeleton and for surface antigens. This revealed the existence of two distinct modes of trypanosome proliferation occurring simultaneously in the salivary glands. The first cycle produces two equivalent cells that are not competent for infection and are attached to the epithelium. This mode of proliferation is predominant at the early steps of infection, ensuring a rapid colonization of the glands. The second mode is more frequent at later stages of infection and involves an asymmetric division. It produces a daughter cell that matures into the infective metacyclic form that is released in the saliva, as demonstrated by the expression of specific molecular markers - the calflagins. The levels of these calcium-binding proteins increase exclusively in the new flagellum during the asymmetric division, showing the commitment of the future daughter cell to differentiation. The coordination of these two alternative cell cycles contributes to the continuous production of infective parasites, turning the tsetse fly into an efficient and long-lasting vector for African trypanosomes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen—designated as early procyclic forms—express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4–7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut. Citation: Imhof S, Knü sel S, Gunasekera K, Vu XL, Roditi I (2014) Social Motility of African Trypanosomes Is a Property of a Distinct Life-Cycle Stage That Occurs Early in Tsetse Fly Transmission. PLoS Pathog 10(10): e1004493. doi:10.1371/journal.ppat.1004493 Copyright: ß 2014 Imhof et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files. Funding: This work was funded by the Swiss National Science Foundation (grant no. 31003A_144142), the Howard Hughes Medical Institute (Grant No. 55007650) and the University of Bern. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
    PLoS Pathogens 10/2014; 10(10):e1004493. · 8.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.
    Nature Reviews Microbiology 06/2014; 12(7):505-18. · 23.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During invasion of host cells by Trypanosoma cruzi, the parasite that causes Chagas disease, the elongated, flagellated trypomastigotes remodel into oval amastigotes with no external flagellum. The underlying mechanism of this remodeling and the fate of the flagellum are obscure. We discovered that T. cruzi trypomastigotes discard their flagella via an asymmetric cellular division. The flagellar proteins liberated become among the earliest parasite proteins to enter the MHC-I processing pathway in infected cells. Indeed, paraflagellar rod protein PAR4-specific CD8(+) T cells detect infected host cells >20 hr earlier than immunodominant trans-sialidase-specific T cells. Overexpression of PAR4 in T. cruzi enhanced the subdominant PAR4-specific CD8(+) T cell response, resulting in improved control of a challenge infection. These results provide insights into previously unappreciated events in intracellular invasion by T. cruzi and highlight the importance of T cells that recognize infected host cells early in the infectious process, in the control of infections.
    Cell host & microbe. 10/2014; 16(4):439-49.