De novo and inherited CNVs in MZ twin pairs selected for discordance and concordance on Attention Problems.

1] Avera Institute for Human Genetics, Avera Behavioral Health Center, Sioux Falls, SD, USA [2] Department of Psychiatry, University of South Dakota, Sioux Falls, SD, USA.
European journal of human genetics: EJHG (Impact Factor: 3.56). 04/2012; 20(10):1037-43. DOI:10.1038/ejhg.2012.49
Source: PubMed

ABSTRACT Copy number variations (CNVs) have been reported to be causal suspects in a variety of psychopathologic traits. We investigate whether de novo and/or inherited CNVs contribute to the risk for Attention Problems (APs) in children. Based on longitudinal phenotyping, 50 concordant and discordant monozygotic (MZ) twin pairs were selected from a sample of ∼3200 MZ pairs. Two types of de novo CNVs were investigated: (1) CNVs shared by both MZ twins, but not inherited (pre-twinning de novo CNVs), which were detected by comparing copy number (CN) calls between parents and twins and (2) CNVs not shared by co-twins (post-twinning de novo CNVs), which were investigated by comparing the CN calls within MZ pairs. The association between the overall CNV burden and AP was also investigated for CNVs genome-wide, CNVs within genes and CNVs outside of genes. Two de novo CNVs were identified and validated using quantitative PCR: a pre-twinning de novo duplication in a concordant-unaffected twin pair and a post-twinning deletion in the higher scoring twin from a concordant-affected pair. For the overall CNV burden analyses, affected individuals had significantly larger CNVs that overlapped with genes than unaffected individuals (P=0.008). This study suggests that the presence of larger CNVs may increase the risk for AP, because they are more likely to affect genes, and confirms that MZ twins are not always genetically identical.

0 0
1 Bookmark
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) is a highly heritable disease (~0.9) with a complex genetic etiology. It is initially characterized by altered cognitive ability which commonly includes impaired language and communication skills as well as fundamental deficits in social interaction. Despite the large amount of studies described so far, the high clinical diversity affecting the autism phenotype remains poorly explained. Recent studies suggest that rare genomic variations, in particular copy number variation (CNV), may account for a significant proportion of the genetic basis of ASD. The use of disease-discordant monozygotic twins represents a powerful strategy to identify de novo and inherited CNV in the disorder. Here we present the results of a comparative genome hybridization (CGH) analysis with a pair of monozygotic twins affected of ASD with significant differences in their clinical manifestations that specially affect speech language impairment and communication skills. Array CGH was performed in three different tissues: blood, saliva, and hair follicle, in an attempt to identify germinal and somatic CNV regions that may explain these differences. Our results argue against a role of large CNV rearrangements as a molecular etiology of the observed differences. This forwards future research to explore de novo point mutation and epigenomic alterations as potential explanations of the observed clinical differences.
    Case reports in genetics. 01/2014; 2014:516529.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Somatic mosaicism of copy number variants (CNVs) in human body organs and de novo CNV event in monozygotic twins suggest that de novo CNVs can occur during mitotic recombination. These de novo CNV events are important for understanding genetic background of evolution and diverse phenotypes. In this study, we explored de novo CNV event in cloned dogs with identical genetic background. We analyzed CNVs in seven cloned dogs using the nuclear donor genome as reference by array-CGH, and identified five de novo CNVs in two of the seven clones. Genomic qPCR, dye-swap array-CGH analysis and B-allele profile analysis were used for their validation. Two larger de novo CNVs (5.2 Mb and 338 Kb) on chromosomes X and 19 in clone-3 were consistently validated by all three experiments. The other three smaller CNVs (sized from 36.1 to76.4 Kb) on chromosomes 2, 15 and 32 in clone-3 and clone-6 were verified by at least one of the three validations. In addition to the de novo CNVs, we identified a 37 Mb-sized copy neutral de novo loss of heterozygosity event on chromosome 2 in clone-6. To our knowledge, this is the first report of de novo CNVs in the cloned dogs which were generated by somatic cell nuclear transfer technology. To study de novo genetic events in cloned animals can help understand formation mechanisms of genetic variants and their biological implications.
    BMC Genomics 12/2013; 14(1):863. · 4.40 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: MicroRNAs are involved in post-transcriptional down-regulation of gene expression. Variations in miRNA genes can severely affect downstream-regulated genes and their pathways. However, population-specific burden of CNVs on miRNA genes and the complexities created towards the phenotype is not known. From a total of 44109 CNVs investigated from 1715 individuals across 12 populations using high-throughput arrays, 4007 miRNA-CNVs (∼9%) consisting 6542 (∼5%) miRNA genes with a total of 333 (∼5%) singleton miRNA genes were identified. We found miRNA-CNVs across the genomes of individuals showing multiple hits in many targets, co-regulated under the same pathway. This study proposes four mechanisms unraveling the many complexities in miRNA genes, targets and co-regulated miRNA genes towards establishment of phenotypic diversity.
    PLoS ONE 01/2014; 9(2):e90391. · 3.73 Impact Factor


Available from
Apr 8, 2013