Article

Zebrafish screen identifies novel compound with selective toxicity against leukemia

Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
Blood (Impact Factor: 10.43). 04/2012; 119(24):5621-31. DOI: 10.1182/blood-2011-12-398818
Source: PubMed

ABSTRACT To detect targeted antileukemia agents we have designed a novel, high-content in vivo screen using genetically engineered, T-cell reporting zebrafish. We exploited the developmental similarities between normal and malignant T lymphoblasts to screen a small molecule library for activity against immature T cells with a simple visual readout in zebrafish larvae. After screening 26 400 molecules, we identified Lenaldekar (LDK), a compound that eliminates immature T cells in developing zebrafish without affecting the cell cycle in other cell types. LDK is well tolerated in vertebrates and induces long-term remission in adult zebrafish with cMYC-induced T-cell acute lymphoblastic leukemia (T-ALL). LDK causes dephosphorylation of members of the PI3 kinase/AKT/mTOR pathway and delays sensitive cells in late mitosis. Among human cancers, LDK selectively affects survival of hematopoietic malignancy lines and primary leukemias, including therapy-refractory B-ALL and chronic myelogenous leukemia samples, and inhibits growth of human T-ALL xenografts. This work demonstrates the utility of our method using zebrafish for antineoplastic candidate drug identification and suggests a new approach for targeted leukemia therapy. Although our efforts focused on leukemia therapy, this screening approach has broad implications as it can be translated to other cancer types involving malignant degeneration of developmentally arrested cells.

Download full-text

Full-text

Available from: Lance Batchelor, Jul 19, 2015
0 Followers
 · 
242 Views
  • Blood 06/2012; 119(24):5614-5. DOI:10.1182/blood-2012-04-425249 · 10.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vivo chemical screening is a broadly applicable approach not only for dissecting genetic pathways governing hematopoiesis and hematological diseases, but also for finding critical components in those pathways that may be pharmacologically modulated. Both high-throughput chemical screening and facile detection of blood-cell-related phenotypes are feasible in embryonic/larval zebrafish. Two recent studies utilizing phenotypic chemical screens in zebrafish have identified several compounds that promote hematopoietic stem cell formation and reverse the hematopoietic phenotypes of a leukemia oncogene, respectively. These studies illustrate efficient drug discovery processes in zebrafish and reveal novel biological roles of prostaglandin E2 in hematopoietic and leukemia stem cells. Furthermore, the compounds discovered in zebrafish screens have become promising therapeutic candidates against leukemia and included in a clinical trial for enhancing hematopoietic stem cells during hematopoietic cell transplantation.
    Advances in Hematology 06/2012; 2012:851674. DOI:10.1155/2012/851674
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to several inherent advantages, zebrafish are being utilized in increasingly sophisticated screens to assess the physiological effects of chemical compounds directly in living vertebrate organisms. Diverse screening platforms showcase these advantages. Morphological assays encompassing basic qualitative observations to automated imaging, manipulation, and data-processing systems provide whole organism to subcellular levels of detail. Behavioral screens extend chemical screening to the level of complex systems. In addition, zebrafish-based disease models provide a means of identifying new potential therapeutic strategies. Automated systems for handling/sorting, high-resolution imaging and quantitative data collection have significantly increased throughput in recent years. These advances will make it easier to capture multiple streams of information from a given sample and facilitate integration of zebrafish at the earliest stages of the drug-discovery process, providing potential solutions to current drug-development bottlenecks. Here we outline advances that have been made within the growing field of zebrafish chemical screening.
    Future medicinal chemistry 09/2012; 4(14):1811-22. DOI:10.4155/fmc.12.115 · 4.00 Impact Factor
Show more