Article

Bioactive peptides from marine organisms: a short overview.

Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico 04510, DF, Mexico.
Protein and Peptide Letters (Impact Factor: 1.99). 04/2012; 19(7):700-7.
Source: PubMed

ABSTRACT Marine organisms are an immense source of new biologically active compounds. These compounds are unique because the aqueous environment requires a high demand of specific and potent bioactive molecules. Diverse peptides with a wide range of biological activities have been discovered, including antimicrobial, antitumoral, and antiviral activities and toxins amongst others. These proteins have been isolated from different phyla such as Porifera, Cnidaria, Nemertina, Crustacea, Mollusca, Echinodermata and Craniata. Purification techniques used to isolate these peptides include classical chromatographic methods such as gel filtration, ionic exchange and reverse-phase HPLC. Multiple in vivo and in vitro bioassays are coupled to the purification process to search for the biological activity of interest. The growing interest to study marine natural products results from the discovery of novel pharmacological tools including potent anticancer drugs now in clinical trials. This review presents examples of interesting peptides obtained from different marine organisms that have medical relevance. It also presents some of the common methods used to isolate and characterize them.

0 Bookmarks
 · 
167 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new antitumor and antioxidant peptide (H3) was isolated from Arca subcrenata Lischke using ion exchange and hydrophobic column chromatography. The purity of H3 was over 99.3% in reversed phase-high performance liquid chromatography (RP-HPLC) and the molecular weight was determined to be 20,491.0 Da by electrospray-ionization mass spectrometry (ESI-MS/MS). The isoelectric point of H3 was measured to be 6.65 by isoelectric focusing-polyacrylamide gel electrophoresis. Partial amino acid sequence of this peptide was determined as ISMEDVEESRKNGMHSIDVNH DGKHRAYWADNTYLM-KCMDLPYDVLDTGGKDRSSDKNTDLVDLFELDMVPDRK NNECMNMIMDVIDTN-TAARPYYCSLDVNHDGAGLSMEDVEEDK via MALDI-TOF/ TOF-MS and de novo sequencing. The in vitro antitumor activity of H3 was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The result indicated that H3 exhibited significant antiproliferative activity against HeLa, HepG2 and HT-29 cell lines with IC50 values of 10.8, 10.1 and 10.5 μg/mL. The scavenging percentage of H3 at 8 mg/mL to 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals were 56.8% and 47.5%, respectively.
    Marine Drugs 01/2013; 11(6):1800-1814. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean "fried egg jellyfish" Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.
    Marine Drugs 01/2013; 11(5):1728-1762. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cnidarian toxins represent a rich source of biologically active compounds. Since they may act via oxidative stress events, the aim of the present study was to verify whether crude venom, extracted from the jellyfish Pelagia noctiluca, elicits inflammation and oxidative stress processes, known to be mediated by Reactive Oxygen Species (ROS) production, in rats. In a first set of experiments, the animals were injected with crude venom (at three different doses 6, 30 and 60 µg/kg, suspended in saline solution, i.v.) to test the mortality and possible blood pressure changes. In a second set of experiments, to confirm that Pelagia noctiluca crude venom enhances ROS formation and may contribute to the pathophysiology of inflammation, crude venom-injected animals (30 µg/kg) were also treated with tempol, a powerful antioxidant (100 mg/kg i.p., 30 and 60 min after crude venom). Administration of tempol after crude venom challenge, caused a significant reduction of each parameter related to inflammation. The potential effect of Pelagia noctiluca crude venom in the systemic inflammation process has been here demonstrated, adding novel information about its biological activity.
    Marine Drugs 01/2014; 12(4):2182-204. · 3.98 Impact Factor

Full-text

View
20 Downloads
Available from
Jun 4, 2014