Hip muscle activity during 3 side lying hip strengthening exercises in distance runners

University of Nevada, Reno, USA.
Journal of athletic training (Impact Factor: 2.02). 01/2012; 47(1):15-23.
Source: PubMed


Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation.
To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises.
Controlled laboratory study.
Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback.
Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax.
Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F(3,57) = 25.903, P < .001), ABD-ER (F(3,57) = 10.458, P < .001), and CLAM (F(3,57) = 4.640, P = .006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1%). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%).
The ABD exercise is preferred if targeted activation of the GMed is a goal. Activation of the other muscles in the ABD-ER and CLAM exercises exceeded that of GMed, which might indicate the exercises are less appropriate when the primary goal is the GMed activation and strengthening.

Download full-text


Available from: Stephen C Cobb,
  • [Show abstract] [Hide abstract]
    ABSTRACT: STUDY DESIGN: Controlled laboratory study, repeated measures design. OBJECTIVES: To compare hip abductor muscle activity during selected exercises using fine-wire electromyography (EMG), and determine which exercises are best for activating gluteus medius and the superior portion of gluteus maximus while minimizing activity of tensor fascia lata (TFL). BACKGROUND: Abnormal hip kinematics (i.e. excessive hip adduction and internal rotation) has been linked to certain musculoskeletal disorders. The TFL is a hip abductor but also internally rotates the hip. As such, it may be important to select exercises that activate the gluteal hip abductors while minimizing activation of TFL. METHODS: Twenty healthy persons participated. EMG signals were obtained from the gluteus medius, superior gluteus maximus, and TFL muscles using fine-wire electrodes as subjects performed 11 different exercises. Normalized EMG signal amplitude was compared among muscles for each exercise using multiple 1-way repeated measures analyses of variance (ANOVAs). A descriptive gluteal-to-TFL muscle activation (GTA) index was used to identify preferred exercises for recruiting the gluteal muscles while minimizing TFL activity. RESULTS: Both gluteal muscles were significantly (P<.05) more active than TFL in unilateral and bilateral bridging, quadruped hip extension (knee flexed and extending), the clam, side-stepping, and squatting. The GTA index ranged from 18 to 115, and was highest for the clam (115), side-step (64), unilateral bridge (59), and both quadruped exercises (50). CONCLUSION: If the goal of rehabilitation is to preferentially activate the gluteal muscles while minimizing TFL activation, then the clam, side-step, unilateral bridge, and both quadruped hip extension exercises would appear to be most appropriate.J Orthop Sports Phys Ther, Epub 16 November 2012. doi:10.2519/jospt.2013.4116.
    11/2012; 43(2). DOI:10.2519/jospt.2013.4116
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conservative non-surgical management of a herniated lumbar intervertebral disc (HLD) in athletes is a complex task due to the dramatic forces imparted on the spine during sport participation. The demands placed upon the athlete during rehabilitation and return to sport are unique not only from a sport specific perspective, but also regarding return to the sport strength and conditioning programs utilized for sport preparation. Many prescriptions fail to address postural and motor control faults specific to athletic development, which may prevent full return to sport after suffering a HLD or predispose the athlete to future exacerbations of a HLD. Strength exercises involving squatting, deadlifting, and Olympic power lifts are large components of the typical athlete's conditioning program, therefore some progressions are provided to address potential underlying problems in the athlete's technique that may have contributed to their HLD in the first place. The purpose of this clinical commentary is to propose a framework for rehabilitation that is built around the phases of healing of the disc. Phase I: Non-Rotational/Non-Flexion Phase (Acute Inflammatory Phase), Phase II: Counter rotation/Flexion Phase (Repair Phase), Phase III: Rotational Phase/Power development (Remodeling Phase), and Phase IV: Full return to sport. This clinical commentary provides a theoretical basis for these phases based on available literature as well as reviewing many popular current practice trends in the management of an HLD. The authors recognize the limits of any general exercise rehabilitation recommendation with regard to return to sport, as well as any general strength and conditioning program. It is vital that an individual assessment and prescription is made for every athlete which reviews and addresses movement in all planes of motion under all necessary extrinsic and intrinsic demands to that athlete. 5.
    08/2013; 8(4):482-516.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Gluteus medius (Gmed) weakness is associated with some lower-extremity injuries. People with Gmed weakness might compensate by activating the tensor fasciae latae (TFL). Different hip rotations in the transverse plane may affect Gmed and TFL muscle activity during isometric side-lying hip abduction (SHA). Objectives: To compare Gmed and TFL muscle activity and the Gmed:TFL muscle-activity ratio during SHA exercise with 3 different hip rotations. Design: The effects of different hip rotations on Gmed, TFL, and the Gmed:TFL muscle-activity ratio during isometric SHA were analyzed with 1-way, repeated-measures analysis of variance. Setting: University research laboratory. Participants: 20 healthy university students were recruited in this study. Interventions: Participants performed isometric SHA: frontal SHA with neutral hip (frontal SHA-N), frontal SHA with hip medial rotation (frontal SHA-MR), and frontal SHA with hip lateral rotation (frontal SHA-LR). Main Outcome Measures: Surface electromyography measured the activity of the Gmed and the TFL. A 1-way repeated-measures analysis of variance assessed the statistical significance of Gmed and TFL muscle activity. When there was a significant difference, a Bonferroni adjustment was performed. Results: Frontal SHA-MR showed significantly greater Gmed muscle activation than frontal SHA-N (P = .000) or frontal SHA-LR (P = .015). Frontal SHA-LR showed significantly greater TFL muscle activation than frontal SHA-N (P = .002). Frontal SHA-MR also resulted in a significantly greater Gmed:TFL muscle-activity ratio than frontal SHA-N (P = .004) or frontal SHA-LR (P = .000), and frontal SHA-N was significantly greater than frontal SHA-LR (P = .000). Conclusions: Frontal SHA-MR results in greater Gmed muscle activation and a higher Gmed:TFL muscle ratio.
    Journal of Sport Rehabilitation 11/2013; 22(4):301-7. · 1.28 Impact Factor
Show more