Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data.

Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA.
Toxicology (Impact Factor: 3.75). 04/2012; 297(1-3):1-9. DOI: 10.1016/j.tox.2012.03.006
Source: PubMed

ABSTRACT There is an urgent need for in vitro screening assays to evaluate nanoparticle (NP) toxicity. However, the relevance of in vitro assays is still disputable. We administered doses of TiO(2) NPs of different sizes to alveolar epithelial cells in vitro and the same NPs by intratracheal instillation in rats in vivo to examine the correlation between in vitro and in vivo responses. The correlations were based on toxicity rankings of NPs after adopting NP surface area as dose metric, and response per unit surface area as response metric. Sizes of the anatase TiO(2) NPs ranged from 3 to 100 nm. A cell-free assay for measuring reactive oxygen species (ROS) was used, and lactate dehydrogenase (LDH) release, and protein oxidation induction were the in vitro cellular assays using a rat lung Type I epithelial cell line (R3/1) following 24 h incubation. The in vivo endpoint was number of PMNs in bronchoalveolar lavage fluid (BALF) after exposure of rats to the NPs via intratracheal instillation. Slope analyses of the dose response curves shows that the in vivo and in vitro responses were well correlated. We conclude that using the approach of steepest slope analysis offers a superior method to correlate in vitro with in vivo results of NP toxicity and for ranking their toxic potency.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several in vivo studies suggest that nanoparticles (smaller than 100 nm) have the ability to reach the brain tissue. Moreover, some nanoparticles can penetrate into the brains of murine fetuses through the placenta by intravenous administration to pregnant mice. However, it is not clear whether the penetrated nanoparticles affect neurogenesis or brain function. To evaluate its effects on neural stem cells, we assayed a human neural stem cell (hNSCs) line exposed in vitro to three types of silica particles (30 nm, 70 nm, and <44 µm) and two types of titanium oxide particles (80 nm and < 44 µm). Our results show that hNSCs aggregated and exhibited abnormal morphology when exposed to the particles at concentrations = 0.1 mg/mL for 7 days. Moreover, all the particles affected the gene expression of Nestin (stem cell marker) and neurofilament heavy polypeptide (NF-H, neuron marker) at 0.1 mg/mL. In contrast, only 30-nm silica particles at 1.0 mg/mL significantly reduced mitochondrial activity. Notably, 30-nm silica particles exhibited acute membrane permeability at concentrations =62.5 µg/mL in 24 h. Although these concentrations are higher than the expected concentrations of nanoparticles in the brain from in vivo experiments in a short period, these thresholds may indicate the potential toxicity of accumulated particles for long-term usage or continuous exposure.
    International Journal of Molecular Sciences 07/2014; 15(7):11742-11759. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Nucleic acids have witnessed a dramatic acceleration in their therapeutic exploitation and currently represent a growing number of applications in drug development pipelines. However, a more wide-spread development of therapeutics based on nucleic acids is restricted by their poor chemical and enzymatic stability in vivo, lack of cellular uptake and insufficient capability to reach intracellular targets. Areas covered: Advanced formulation of nucleic acids in nano-sized carriers may help unlocking their potential as therapeutic agents. Nano-sized matters own specific features responsible for inducing characteristic interactions with biological molecules and tissues. These properties enable for the enhancement of the nano-formulation's therapeutic efficacy, but on the other hand, the nanomatters interactions in biological fluids are also responsible for adverse effects. The purpose of this review is to reflect on the complexity in the therapeutic delivery of RNA interference-based drugs emerging from the recent clinical experiences and report the actual technological and analytical advances introduced to solve it. Expert opinion: The complexity in the therapeutic delivery of nucleic acids and the heterogeneity of side effects make the interpretation of the therapeutic outcome difficult. Hence the development of analytical approaches applicable in the field of nucleic acid delivery is becoming a major challenge.
    Expert Opinion on Drug Delivery 06/2014; · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In the past few years, promising efforts to utilize microfabrication-based technologies have laid the foundation for developing advanced, and importantly more physiologically-realistic, microfluidic methods for risk assessment of engineered nanomaterials (ENMs). In the present review, we discuss the wave of recent developments using microfluidic-based in vitro models and platforms for nanotoxicological assays, such as determination of cell viability, cellular dose, oxidative stress and nuclear damage. Here, we specifically highlight the tangible advantages of microfluidic devices in providing promising tools to tackle many of the current and ongoing challenges faced with traditional toxicology assays. Most importantly, microfluidic technology not only allows to recreate physiologically-relevant in vitro models for nanotoxicity examinations, but also provides platforms that deliver an attractive strategy towards improved control over applied ENM doses. In a final step, we present examples of state-of-the-art microfluidic platforms for in vitro assessment of potential adverse ENM effects.
    Nanotoxicology 07/2014; · 7.34 Impact Factor