Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data

Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA.
Toxicology (Impact Factor: 3.62). 04/2012; 297(1-3):1-9. DOI: 10.1016/j.tox.2012.03.006
Source: PubMed


There is an urgent need for in vitro screening assays to evaluate nanoparticle (NP) toxicity. However, the relevance of in vitro assays is still disputable. We administered doses of TiO(2) NPs of different sizes to alveolar epithelial cells in vitro and the same NPs by intratracheal instillation in rats in vivo to examine the correlation between in vitro and in vivo responses. The correlations were based on toxicity rankings of NPs after adopting NP surface area as dose metric, and response per unit surface area as response metric. Sizes of the anatase TiO(2) NPs ranged from 3 to 100 nm. A cell-free assay for measuring reactive oxygen species (ROS) was used, and lactate dehydrogenase (LDH) release, and protein oxidation induction were the in vitro cellular assays using a rat lung Type I epithelial cell line (R3/1) following 24 h incubation. The in vivo endpoint was number of PMNs in bronchoalveolar lavage fluid (BALF) after exposure of rats to the NPs via intratracheal instillation. Slope analyses of the dose response curves shows that the in vivo and in vitro responses were well correlated. We conclude that using the approach of steepest slope analysis offers a superior method to correlate in vitro with in vivo results of NP toxicity and for ranking their toxic potency.

1 Follower
43 Reads
    • "To circumvent some of these drawbacks, in vitro cell-based assays have been gaining momentum in recent years in becoming a reliable alternative to in vivo testing for ENM toxicity and ranking their toxic potency (Han et al., 2012). Amongst others, in vitro approaches are particularly attractive because of the high costs and ethical issues associated with animal testing. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In the past few years, promising efforts to utilize microfabrication-based technologies have laid the foundation for developing advanced, and importantly more physiologically-realistic, microfluidic methods for risk assessment of engineered nanomaterials (ENMs). In the present review, we discuss the wave of recent developments using microfluidic-based in vitro models and platforms for nanotoxicological assays, such as determination of cell viability, cellular dose, oxidative stress and nuclear damage. Here, we specifically highlight the tangible advantages of microfluidic devices in providing promising tools to tackle many of the current and ongoing challenges faced with traditional toxicology assays. Most importantly, microfluidic technology not only allows to recreate physiologically-relevant in vitro models for nanotoxicity examinations, but also provides platforms that deliver an attractive strategy towards improved control over applied ENM doses. In a final step, we present examples of state-of-the-art microfluidic platforms for in vitro assessment of potential adverse ENM effects.
    Nanotoxicology 07/2014; 9(3):1-15. DOI:10.3109/17435390.2014.940402 · 6.41 Impact Factor
  • Source
    • "Both in vitro and in vivo studies of nanoparticles toxicity are currently in progress [8,9,10,11,12,13]. In vitro studies have revealed several cytotoxic mechanisms, such as (1) reactive oxygen species (ROS) generation by cells that uptake titanium oxide particles [14,15] or silicon/silica particles [16,17]; and (2) the release of metallic material from Cd/Se quantum dots (QDs) after UV exposure [16] or silver particles [18]; and (3) structure-related toxicity caused by multi-walled carbon nanotubes [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Several in vivo studies suggest that nanoparticles (smaller than 100 nm) have the ability to reach the brain tissue. Moreover, some nanoparticles can penetrate into the brains of murine fetuses through the placenta by intravenous administration to pregnant mice. However, it is not clear whether the penetrated nanoparticles affect neurogenesis or brain function. To evaluate its effects on neural stem cells, we assayed a human neural stem cell (hNSCs) line exposed in vitro to three types of silica particles (30 nm, 70 nm, and <44 µm) and two types of titanium oxide particles (80 nm and < 44 µm). Our results show that hNSCs aggregated and exhibited abnormal morphology when exposed to the particles at concentrations = 0.1 mg/mL for 7 days. Moreover, all the particles affected the gene expression of Nestin (stem cell marker) and neurofilament heavy polypeptide (NF-H, neuron marker) at 0.1 mg/mL. In contrast, only 30-nm silica particles at 1.0 mg/mL significantly reduced mitochondrial activity. Notably, 30-nm silica particles exhibited acute membrane permeability at concentrations =62.5 µg/mL in 24 h. Although these concentrations are higher than the expected concentrations of nanoparticles in the brain from in vivo experiments in a short period, these thresholds may indicate the potential toxicity of accumulated particles for long-term usage or continuous exposure.
    International Journal of Molecular Sciences 07/2014; 15(7):11742-11759. DOI:10.3390/ijms150711742 · 2.86 Impact Factor
  • Source
    • "However, to date in vitro assays have produced conflicting results that often disagree with animal data [6,10,17-19]. One impediment to the development of reliable in vitro screening methods is the need for accurate dosimetry [10,15-18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background There is a great need for screening tools capable of rapidly assessing nanomaterial toxicity. One impediment to the development of reliable in vitro screening methods is the need for accurate measures of cellular dose. We present here a methodology that enables accurate determination of delivered to cell dose metrics. This methodology includes (1) standardization of engineered nanomaterial (ENM) suspension preparation; (2) measurement of ENM characteristics controlling delivery to cells in culture; and (3) calculation of delivered dose as a function of exposure time using the ISDD model. The approach is validated against experimentally measured doses, and simplified analytical expressions for the delivered dose (Relevant In Vitro Dose (RID)f function) are derived for 20 ENMs. These functions can be used by nanotoxicologists to accurately calculate the total mass (RIDM), surface area (RIDSA), or particle number (RIDN) delivered to cells as a function of exposure time. Results The proposed methodology was used to derive the effective density, agglomerate diameter and RID functions for 17 industrially-relevant metal and metal oxide ENMs, two carbonaceous nanoparticles, and non-agglomerating gold nanospheres, for two well plate configurations (96 and 384 well plates). For agglomerating ENMs, the measured effective density was on average 60% below the material density. We report great variability in delivered dose metrics, with some materials depositing within 24 hours while others require over 100 hours for delivery to cells. A neutron-activated tracer particle system was employed to validate the proposed in vitro dosimetry methodology for a number of ENMs (measured delivered to cell dose within 9% of estimated). Conclusions Our findings confirm and extend experimental and computational evidence that agglomerate characteristics affect the dose delivered to cells. Therefore measurement of these characteristics is critical for effective use of in vitro systems for nanotoxicology. The mixed experimental/computational approach to cellular dosimetry proposed and validated here can be used by nanotoxicologists to accurately calculate the delivered to cell dose metrics for various ENMs and in vitro conditions as a function of exposure time. The RID functions and characterization data for widely used ENMs presented here can together be used by experimentalists to design and interpret toxicity studies.
    Particle and Fibre Toxicology 05/2014; 11(1). DOI:10.1186/1743-8977-11-20 · 7.11 Impact Factor
Show more