Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data

Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA.
Toxicology (Impact Factor: 3.75). 04/2012; 297(1-3):1-9. DOI: 10.1016/j.tox.2012.03.006
Source: PubMed

ABSTRACT There is an urgent need for in vitro screening assays to evaluate nanoparticle (NP) toxicity. However, the relevance of in vitro assays is still disputable. We administered doses of TiO(2) NPs of different sizes to alveolar epithelial cells in vitro and the same NPs by intratracheal instillation in rats in vivo to examine the correlation between in vitro and in vivo responses. The correlations were based on toxicity rankings of NPs after adopting NP surface area as dose metric, and response per unit surface area as response metric. Sizes of the anatase TiO(2) NPs ranged from 3 to 100 nm. A cell-free assay for measuring reactive oxygen species (ROS) was used, and lactate dehydrogenase (LDH) release, and protein oxidation induction were the in vitro cellular assays using a rat lung Type I epithelial cell line (R3/1) following 24 h incubation. The in vivo endpoint was number of PMNs in bronchoalveolar lavage fluid (BALF) after exposure of rats to the NPs via intratracheal instillation. Slope analyses of the dose response curves shows that the in vivo and in vitro responses were well correlated. We conclude that using the approach of steepest slope analysis offers a superior method to correlate in vitro with in vivo results of NP toxicity and for ranking their toxic potency.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nanotechnology offers some exciting possibilities in cancer treatment, including the possibility of destroying tumors with minimal damage to healthy tissue and organs by targeted drug delivery systems. Considerable achievements in investigations aimed at the use of ZnO nanoparticles and nanocontainers in diagnostics and antitumor therapy were described. However, there are substantial obstacles to the purposes to be achieved by the use of zinc oxide nanosize materials in antitumor therapy. Among the serious problems are the techniques of obtaining ZnO nanosize materials. The article presents a new vector delivery system for the known antitumor drug, doxorubicin in the form of polymeric (PEO, starch-NaCMC) hydrogels, in which nanosize ZnO film of a certain thickness are deposited directly on the drug surface on glass substrate by DC-magnetron sputtering of a zinc target. Anticancer activity in vitro and in vivo of those nanosize zinc oxide composites is shown.
    World Academy of Science, Engineering and Technology; 01/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TiO2 nanoparticles (NPs) have the second highest global annual production (∼3000 tons) among the metal-containing NPs. These NPs are used as photocatalysts for bacterial disinfection, and in various other consumer products including sunscreen, food packaging, therapeutics, biosensors, surface cleaning agents, and others. Humans are exposed to these NPs during synthesis (laboratory), manufacture (industry), and use (consumer products, devices, medicines, etc.), as well as through environmental exposures (disposal). Hence, there is great concern regarding the health effects caused by exposure to NPs and, in particular, to TiO2 NPs. In the present study, the genotoxic potential of TiO2 NPs in A549 cells was examined, focusing on their potential to induce ROS, different types of DNA damage, and cell cycle arrest. We show that TiO2 NPs can induce DNA damage and a corresponding increase in micronucleus frequency, as evident from the comet and cytokinesis-block micronucleus assays. We demonstrate that DNA damage may be attributed to increased oxidative stress and ROS generation. Furthermore, genomic and proteomic analyses showed increased expression of ATM, P53, and CdC-2 and decreased expression of ATR, H2AX, and Cyclin B1 in A549 cells, suggesting induction of DNA double strand breaks. The occurrence of double strand breaks was correlated with cell cycle arrest in G2/M phase. Overall, the results indicate the potential for genotoxicity following exposure to these TiO2 NPs, suggesting that use should be carefully monitored. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 03/2015; 56:204-217. DOI:10.1002/em.21925 · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the course of studies of the interaction of proteins with TiO2 nanoparticles, we have investigated the role of the medium employed in cellular tests, by measuring the variation of ζ-potential vs pH in the range 2−9 and bovine serum albumin adsorption on TiO2 P25 in the presence of either HEPES or PBS as buffers, both mimicking the physiological pH, but with different chemical nature. The two buffers yield remarkably dissimilar surface charges and protein uptake, i.e., they impart different surface characteristics to the particles which could affect the contact with cells or tissues. This may account for dissimilar toxicological outcomes among in vitro tests and particularly between in vitro vs in vivo tests, considering the high amount of phosphate ions present in body fluids.
    Chemical Research in Toxicology 12/2014; 28(1):87-91. DOI:10.1021/tx500366a · 4.19 Impact Factor