Article

Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a common core of microorganisms involved in their formation

Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Seville, Spain.
FEMS Microbiology Ecology (Impact Factor: 3.88). 04/2012; 81(1):255-66. DOI: 10.1111/j.1574-6941.2012.01383.x
Source: PubMed

ABSTRACT Morphologically similar microbial communities that often form on the walls of geographically distinct limestone caves have not yet been comparatively studied. Here, we analysed phylotype distribution in yellow microbial community samples obtained from the walls of distinct caves located in Spain, Czech Republic and Slovenia. To infer the level of similarity in microbial community membership, we analysed inserts of 474 16S rRNA gene clones and compared those using statistical tools. The results show that the microbial communities under investigation are composed solely of Bacteria. The obtained phylotypes formed three distinct groups of operational taxonomic units (OTUs). About 60% of obtained sequences formed three core OTUs common to all three sampling sites. These were affiliated with actinobacterial Pseudonocardinae (30-50% of sequences in individual sampling site libraries), but also with gammaproteobacterial Chromatiales (6-25%) and Xanthomonadales (0.5-2.0%). Another 7% of sequences were common to two sampling sites and formed eight OTUs, while the remaining 35% were site specific and corresponded mostly to OTUs containing single sequences. The same pattern was observed when these data were compared with sequence data available from similar studies. This comparison showed that distinct limestone caves support microbial communities composed mostly of phylotypes common to all sampling sites.

0 Bookmarks
 · 
91 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexiand the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota,and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that manyculturablestrainswerehighlyresistanttovariousstressesandthusmayberesponsibleforthedamage to cave paintings in the Mogao Grottoes.
    Scientific Reports 01/2015; DOI:10.1038/srep07752 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Worldwide, lava caves host colorful microbial mats. However, little is known about the diversity of these microorganisms, or what role they may play in the subsurface ecosystem. White and yellow microbial mats were collected from four lava caves each on the Azorean island of Terceira and the Big Island of Hawai'i, to compare the bacterial diversity found in lava caves from two widely separated archipelagos in two different oceans at different latitudes. Scanning electron microscopy of mat samples showed striking similarities between Terceira and Hawai'ian microbial morphologies. 16S rRNA gene clone libraries were constructed to determine the diversity within these lava caves. Fifteen bacterial phyla were found across the samples, with more Actinobacteria clones in Hawai'ian communities and greater numbers of Acidobacteria clones in Terceira communities. Bacterial diversity in the subsurface was correlated with a set of factors. Geographical location was the major contributor to differences in community composition (at the OTU level), together with differences in the amounts of organic carbon, nitrogen and copper available in the lava rock that forms the cave. These results reveal, for the first time, the similarity among the extensive bacterial diversity found in lava caves in two geographically separate locations and contribute to the current debate on the nature of microbial biogeography.
    Geomicrobiology 01/2014; 31(3):205-220. · 1.80 Impact Factor