Estrogen and the cardiovascular system

Molecular and Cellular Cardiology, Department of Medicine, University of California, Davis, CA 95616, USA.
Pharmacology [?] Therapeutics (Impact Factor: 9.72). 03/2012; 135(1):54-70. DOI: 10.1016/j.pharmthera.2012.03.007
Source: PubMed


Estrogen is a potent steroid with pleiotropic effects, which have yet to be fully elucidated. Estrogen has both nuclear and non-nuclear effects. The rapid response to estrogen, which involves a membrane associated estrogen receptor(ER) and is protective, involves signaling through PI3K, Akt, and ERK 1/2. The nuclear response is much slower, as the ER-estrogen complex moves to the nucleus, where it functions as a transcription factor, both activating and repressing gene expression. Several different ERs regulate the specificity of response to estrogen, and appear to have specific effects in cardiac remodeling and the response to injury. However, much remains to be understood about the selectivity of these receptors and their specific effects on gene expression. Basic studies have demonstrated that estrogen treatment prevents apoptosis and necrosis of cardiac and endothelial cells. Estrogen also attenuates pathologic cardiac hypertrophy. Estrogen may have great benefit in aging as an anti-inflammatory agent. However, clinical investigations of estrogen have had mixed results, and not shown the clear-cut benefit of more basic investigations. This can be explained in part by differences in study design: in basic studies estrogen treatment was used immediately or shortly after ovariectomy, while in some key clinical trials, estrogen was given years after menopause. Further basic research into the underlying molecular mechanisms of estrogen's actions is essential to provide a better comprehension of the many properties of this powerful hormone.

1 Follower
5 Reads
  • Source
    • "Estradiol actions are manifest through estrogen nuclear receptors alpha (ERα) and beta (ERβ), encoded by ESR1 and ESR2 genes, respectively [13], and one G-protein coupled receptor [8]. Most reports consolidated ERα as the main responsible for E2 endothelial effects [14]: eliminating ERα from endothelial cells resulted in abolishment of E2-induced NO release [15]; likewise, NO bioavailability and the consequent vasodilatation induced by E2 were abolished in ERα KO mice [11]. ESR1 is located in chromosome 6p25.1 and encodes a 6.8-kilobase mRNA containing eight exons [16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular benefits from estradiol activation of nitric oxide endothelial production may depend on vascular wall and on estrogen receptor alpha (ESR1) and nitric oxide synthase (NOS3) polymorphisms. We have evaluated the microcirculation in vivo through nailfold videocapillaroscopy, before and after acute nasal estradiol administration at baseline and after increased sheer stress (postocclusive reactive hyperemia response) in 100 postmenopausal women, being 70 controls (healthy) and 30 simultaneously hypertensive and diabetic (HD), correlating their responses to PvuII and XbaI ESR1 polymorphisms and to VNTR, T-786C and G894T NOS3 variants. In HD women, C variant allele of ESR1 Pvull was associated to higher vasodilatation after estradiol (1.72 vs 1.64 mm/s, p = 0.01 compared to TT homozygotes) while G894T and T-786C NOS3 polymorphisms were connected to lower increment after shear stress (15% among wild type and 10% among variant alleles, p = 0.02 and 0.04). The G variant allele of ESR1 XbaI polymorphism was associated to higher HOMA-IR (3.54 vs. 1.64, p = 0.01) in HD and higher glucose levels in healthy women (91.8 vs. 87.1 mg/dl, p = 0.01), in which increased waist and HOMA-IR were also related to the G allele in NOS3 G894T (waist 93.5 vs 88.2 cm, p = 0.02; HOMA-IR 2.89 vs 1.48, p = 0.05). ESR1 Pvull, NOS3 G894T and T-786C polymorphism analysis may be considered in HD postmenopausal women for endothelial response prediction following estrogen therapy but were not discriminatory for endothelial response in healthy women. ESR1 XbaI and G894T NOS3 polymorphisms may be useful in accessing insulin resistance and type 2 diabetes risks in all women, even before menopause and occurrence of metabolic disease.
    PLoS ONE 07/2014; 9(7):e103444. DOI:10.1371/journal.pone.0103444 · 3.23 Impact Factor
  • Source
    • "Estrogen treatment produces a broad effect on multiple nuclear and non-nuclear pathways in blood vessels [25], [26]. In this study, we explored responses of ER-α and ER-β in post-ischemic cerebral microvessels after chronic oral estrogen treatment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Several studies demonstrate that estrogen treatment improves cerebral blood flow in ischemic brain regions of young ovariectomized (OVX) rats. Estrogen receptor-α (ER-α) may mediate estrogen’s beneficial actions via its effects on the cerebral microvasculature. However, estrogen-derived benefit may be attenuated in aged, reproductively senescent (RS) rats. Our goal was to determine the effects of aging, estrogen deprivation and estrogen repletion with oral conjugated estrogens (CE) on postischemic cerebral microvascular protein expression of ER-α and ER-β. Methods Fisher-344 (n = 37) female rats were randomly divided into the following groups: OVX, OVX CE-treated, RS untreated, and RS CE-treated. After 30 days pretreatment with CE (0.01 mg/kg) rats were subjected to15 min. transient global cerebral ischemia. Non-ischemic naïve, OVX and RS rats were used as controls. Expression of ER-α and ER-β in isolated cortical cerebral microvessels (20 to 100 µm in diameter) was assessed using Western blot and immunohistochemistry techniques. Results Age and reproductive status blunted nonischemic ER-α expression in microvessels of OVX rats (0.31±0.05) and RS rats (0.33±0.06) compared to naïve rats (0.45±0.02). Postischemic microvascular expression of ER-α in OVX rats (0.01±0.0) was increased by CE treatment (0.04±0.01). Expression of ER-α in microvessels of RS rats (0.03±0.02) was unaffected by CE treatment (0.01±0.02). Western blot data are presented as a ratio of ER-α or ER-β proteins to β-actin and. Oral CE treatment had no effect on ER-β expression in postischemic microvessels of OVX and RS rats. Statistical analysis was performed by One-Way ANOVA and a Newman-Keuls or Student’s post-hoc test. Conclusion Chronic treatment with CE increases ER-α but not ER-β expression in cerebral microvessels of OVX rats. Aging appears to reduce the normal ability of estrogen to increase ER-α expression in postischemic cerebral microvessels.
    PLoS ONE 07/2014; 9(7):e102194. DOI:10.1371/journal.pone.0102194 · 3.23 Impact Factor
  • Source
    • "Estrogen (Est) is an ovarian hormone that has various effects on the central nervous system (CNS) and peripheral organs of body including cardiovascular system.[11] The influence of Est on central cardiovascular circuits also is reported.[1213] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Arterial baroreflex (ABR) is an important factor in preventing of blood pressure fluctuations that determined by baroreflex sensitivity (BRS). Estrogen is an ovarian hormone that has influence on ABR. The mechanism of this effect of estrogen unknown and may be mediated by β-adrenergic receptor of nucleus tractus solitarius (NTS), an important area in regulation of baroreflex. Therefore, in this study changing of BRS by estrogen after blockade β-adrenergic receptor of NTS in ovariectomized rats (Ovx) and Ovx treated with estrogen (Est) was examined. After ovariectomy, all female rats divided to Ovx and Ovx + Est groups and two series of experiments were performed. In the first experiment, phenylephrine was [intravenously, IV] injected in both the Ovx and Ovx + Est groups, and mean arterial pressure (MAP), heart rate (HR), and BRS were evaluated (n = 8 for each group). In the second experiment, each of Ovx and Ovx + Est groups divided into saline and propranolol (pro) groups, saline and pro stereotaxically were microinjected into NTS, respectively. Further, phenylephrine (IV) was injected in all groups and BRS was evaluated. BRS significantly increased in estrogen-treated groups (Ovx + Est) compared to Ovx groups (P < 0.01). The blockade β-adrenergic receptor of NTS by pro did not significantly changed BRS in both Ovx and Ovx + Est groups. We concluded that there aren't any intraction between estrogen and β-adrenergic receptor of NTS in BRS.
    02/2014; 3(1):83. DOI:10.4103/2277-9175.127996
Show more