Effects of dehydration on cardiovascular development in the embryonic American alligator (Alligator mississipiensis).

Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology (Impact Factor: 2.2). 03/2012; 162(3):252-8. DOI: 10.1016/j.cbpa.2012.03.013
Source: PubMed

ABSTRACT Effects of dehydration on reptilian embryonic cardiovascular function are unknown. Here, we present the first morphological and physiological data quantifying the cumulative effects of four acute dehydration events on the embryonic American alligator, Alligator mississipiensis. We hypothesized that dehydration would alter embryonic morphology, reduce blood volume and augment the response to angiotensin II (Ang II), a key osmotic and blood volume regulatory response element in adult vertebrates. Drying events at 30%, 40%, 50%, and 60% of embryonic incubation reduced total egg water content by 14.43 ± 0.37 g, a 3.4 fold increase relative to controls. However, embyronic blood volume was greater in the dehydration group at 70% of embryonic incubation compared to controls (0.39 ± 0.044 mLg(-1) and 0.22 ± 0.03 mLg(-1), respectively), however, both groups were similar at 90% of incubation (0.18 ± 0.02 mLg(-1) in the controls and 0.23 ± 0.03 mLg(-1) in the dehydrated group). Dehydration altered the morphological phenotype and resulted in an overall reduction in embryonic mass at both incubation time points measured. Dehydration also altered the physiological phenotype, resulting in embryonic alligators that were relatively bradycardic at 90% of incubation. Arterial Ang II injections resulted in a dose dependent hypertension, which increased in intensity over the span of incubation studied. While progressive incubation altered the Ang II response, dehydration had no impact on the cardiovascular responses to the peptide. Quantification of Ang II type-1 receptor protein using western blot analysis illustrated that dehydration condition and incubation time point did not alter protein quantity. Collectively, our results show that dehydration during embryonic development of the American alligator alters embryonic morphology and baseline heart rate without altering arterial pressure and response to Ang II.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A chorioallantoic membrane artery in embryos of the red-footed tortoise, Chelonoidis carbonaria was occlusively cannulated for measurement of blood pressure and injection of drugs. Two age groups of embryos in the final 10 % of incubation were categorized by the ratio of embryonic body to yolk mass. All embryos first received cholinergic and β-adrenergic blockade. This revealed that β-adrenergic control was established in both groups whereas cholinergic control was only established in the older group immediately prior to hatching. The study then progressed as two series. Series one was conducted in a subset of embryos treated with histamine before or after injection of ranitidine, the antagonist of H(2) receptors. Injection of histamine caused an initial phasic hypertension which recovered, followed by a longer lasting hypertensive response accompanied by a tachycardia. Injection of the H(2) receptor antagonist ranitidine itself caused a hypotensive tachycardia with subsequent recovery of heart rate. Ranitidine also abolished the cardiac effects of histamine injection while leaving the initial hypertensive response intact. In series, two embryos were injected with histamine after injection of diphenhydramine, the antagonist to H(1) receptors. This abolished the whole of the pressor response to histamine injection but left the tachycardic response intact. These data indicate that histamine acts as a non-adrenergic, non-cholinergic factor, regulating the cardiovascular system of developing reptilian embryos and that its overall effects are mediated via both H(1) and H(2) receptor types.
    Journal of Comparative Physiology B 02/2013; · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We used arterial tyramine injections to study development of sympathetic actions on in vivo heart rate and blood pressure in embryonic, hatching and yearling female American alligators. Tyramine is a pharmacological tool for understanding comparative and developmental sympathetic regulation of cardiovascular function, and this indirect sympathomimetic agent causes endogenous neuronal catecholamine release, increasing blood pressure and heart rate. Arterial tyramine injection in hatchling and yearling alligators caused the typical vertebrate response - rise in heart rate and blood pressure. However, in embryonic alligators, tyramine caused a substantial and immediate bradycardia at both 70% and 90% of embryonic development. This embryonic bradycardia was accompanied by hypotension, followed by a sustained hypertension similar to the hatchling and juvenile responses. Pretreatment with atropine injection (cholinergic receptor blocker) eliminated the embryonic hypotensive bradycardia, and phentolamine pretreatment (α-adrenergic receptor blocker) eliminated the embryonic hypotensive and hypertensive responses but not the bradycardia. In addition, hexamethonium pretreatment (nicotinic receptor blocker) significantly blunted embryos' bradycardic tyramine response. However, pretreatment with 6-hydroxydopamine, a neurotoxin that destroys catecholaminergic terminals, did not eliminate the embryonic bradycardia. Tyramine likely stimulated a unique embryonic response - neurotransmitter release from preganglionic nerve terminals (blocked with hexamethonium) and an acetylcholine mediated bradycardia with a secondary norepinephrine-dependent sustained hypertension. In addition, tyramine appears to stimulate sympathetic nerve terminals directly, which contributed to the overall hypertension in the embryonic, hatchling and yearling animals. Data demonstrated that humoral catecholamine control over cardiovascular function was dominant over the immature parasympathetic nervous system in developing alligator embryos, and suggested that sympathetic and parasympathetic nerve terminals were present and developing in ovo but were not tonically active.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 03/2013; · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental conditions play a major role in shaping reptilian embryonic development, but studies addressing the impact of interactions between chronic and acute environmental stressors on embryonic systems are lacking. In the present study, we investigated thermal dependence of cholinergic and adrenergic cardiovascular tone in embryonic American alligators (Alligator mississippiensis) and assessed possible phenotypic plasticity in a chronic hypoxic incubation treatment. We compared changes in heart rate (f H) and mean arterial blood pressure (P M) for chronically hypoxic and normoxic-incubated embryos after cholinergic and adrenergic blockade following three different acute temperature treatments: (1) 30 °C (control incubation temperature), (2) acute, progressive decrease 30-24 °C then held at 24 °C, and (3) acute, progressive increase 30-36 °C then held at 36 °C. f H progressively fell in response to decreasing temperature and rose in response to increasing temperature. P M did not significantly change with decreasing temperature, but was lowered significantly with increasing acute temperature in the normoxic group at 90 % of development only. Propranolol administration (β adrenergic antagonist) produced a significant f H decrease at 24, 30, and 36 °C that was similar at all temperatures for all groups. For normoxic-incubated embryos at 90 % of development, atropine administration (cholinergic antagonist) significantly increased f H in both 24 and 36 °C treatments, but not in the 30 °C control treatment. This atropine response at 24 and 36 °C demonstrated acute thermally dependent cholinergic tone on f H late in development for normoxic-incubated, but not chronically hypoxic-incubated embryos. Collectively, data indicated that cardiovascular control mechanisms in embryonic alligators may be activated by thermal extremes, and the maturation of control mechanisms was delayed by chronic hypoxia.
    Journal of Comparative Physiology B 04/2013; · 2.02 Impact Factor