Article

Photoacoustic mammography: initial clinical results.

Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaracho Shogoin Sakyoku, Kyoto, 6068507, Japan, .
Breast Cancer (Impact Factor: 1.51). 04/2012; 21(2). DOI: 10.1007/s12282-012-0363-0
Source: PubMed

ABSTRACT PURPOSE: Photoacoustic tomography can image the hemoglobin distribution and oxygenation state inside tissue with high spatial resolution. The purpose of this study is to investigate its clinical usefulness for diagnosis of breast cancer and evaluation of therapeutic response in relation to other diagnostic modalities. MATERIALS AND METHODS: Using a prototype machine for photoacoustic mammography (PAM), 27 breast tumor lesions, including 21 invasive breast cancer (IBC), five ductal carcinoma in situ (DCIS), and one phyllodes tumor, were measured. Nine out of twenty-one IBC patients had received primary systemic therapy (PST). RESULTS: Eight out of twelve IBC without PST were visible. Notably, detection was possible in all five cases with DCIS, whereas it was not in one case with phyllodes tumor. Seven out of nine IBC with PST were assigned as visible in spite of decreased size of tumor after PST. The mean value of hemoglobin saturation in the visible lesions was 78.6 %, and hemoglobin concentration was 207 μM. The tumor images of PAM were comparable to those of magnetic resonance imaging (MRI). CONCLUSIONS: It is suggested that PAM can image tumor vascularity and oxygenation, which may be useful for diagnosis and characterization of breast cancer.

1 Bookmark
 · 
161 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the diagnostic utility of PAI at detecting thyroid microcalcifications at 700 nm laser wavelengths. This study included 36 resected samples in 18 patients. To evaluate the PA manifestation of microcalcifications in PAI, gray level histogram and co-occurrence matrix (COM) texture parameters were extracted from the 3 fixed ROI US and PA images, respectively, per sample. We compared the textural parameters obtained from specimen PAIs between samples with punctate microcalcifications on specimen radiography and those without microcalcifications. On specimen US, the mean value (2748.4±862.5) of samples with microcalcifications on specimen radiography was higher than that (1961.9±780.2) of those without microcalcifications (P = 0.007). However, there were no significant differences in textural parameters obtained from specimen PAIs between samples with punctate microcalcifications on specimen radiography and those without when applying both the mean value of the three slices of thyroid specimens and the value of the thyroid specimen slice which had the highest value of the mean values in specimen US. PAI did not show significant PA contrast on thyroid microcalcifications indicating that the experimental setup and protocols should be enhanced, e.g., method of complete blood rejection from ex vivo specimens, the multi-wavelength spectroscopic PA imaging method which can solely extract the PA signal from microcalcifications even with high spectral interferences, or PA imaging with narrower slice thickness using 2-dimensional array transducer, etc.
    PLoS ONE 11/2014; 9(11):e113358. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of new blood vessels is a crucial step in breast cancer growth, progression and dissemination, making it a promising therapeutic target. Breast cancer has a heterogeneous nature and the diversity of responsible angiogenic pathways between different tumors has been studied for many years. Inhibiting different targets in these pathways has been under investigation in preclinical and clinical studies for more than decades, among which antibody against vascular endothelial growth factor is the most studied. However, the clinical impact from antiangiogenic treatment alone or in combination with standard chemotherapeutic regimens has been relatively small till today. In this review, we summarize the most clinically relevant data from breast cancer treatment clinical trials and discuss safety and efficacy of common antiangiogenic therapies as well as biological predictive markers.
    Japanese Journal of Clinical Oncology 01/2014; · 1.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photoacoustic imaging (PAI) has the potential for real-time molecular imaging at high resolution and deep inside the tissue, using nonionizing radiation and not necessarily depending on exogenous imaging agents, making this technique very promising for a range of clinical applications. The fact that PAI systems can be made portable and compatible with existing imaging technologies favors clinical translation even more. The breadth of clinical applications in which photoacoustics could play a valuable role include: noninvasive imaging of the breast, sentinel lymph nodes, skin, thyroid, eye, prostate (transrectal), and ovaries (transvaginal); minimally invasive endoscopic imaging of gastrointestinal tract, bladder, and circulating tumor cells (in vivo flow cytometry); and intraoperative imaging for assessment of tumor margins and (lymph node) metastases. In this review, we describe the basics of PAI and its recent advances in biomedical research, followed by a discussion of strategies for clinical translation of the technique. Cancer Res; 74(4); 1-26. ©2014 AACR.
    Cancer Research 02/2014; · 9.28 Impact Factor