FLASH assembly of TALENs for high-throughput genome editing.

Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
Nature Biotechnology (Impact Factor: 39.08). 04/2012; 30(5):460-5. DOI: 10.1038/nbt.2170
Source: PubMed

ABSTRACT Engineered transcription activator–like effector nucleases (TALENs) have shown promise as facile and broadly applicable genome editing tools. However, no publicly available high-throughput method for constructing TALENs has been published, and large-scale assessments of the success rate and targeting range of the technology remain lacking. Here we describe the fast ligation-based automatable solid-phase high-throughput (FLASH) system, a rapid and cost-effective method for large-scale assembly of TALENs. We tested 48 FLASH-assembled TALEN pairs in a human cell–based EGFP reporter system and found that all 48 possessed efficient gene-modification activities. We also used FLASH to assemble TALENs for 96 endogenous human genes implicated in cancer and/or epigenetic regulation and found that 84 pairs were able to efficiently introduce targeted alterations. Our results establish the robustness of TALEN technology and demonstrate that FLASH facilitates high-throughput genome editing at a scale not currently possible with other genome modification technologies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developmental biology, as all experimental science, is empowered by technological advances. The availability of genetic tools in some species - designated as model organisms - has driven their use as major platforms for understanding development, physiology and behavior. Extending these tools to a wider range of species determines whether (and how) we can experimentally approach developmental diversity and evolution. During the last two decades, comparative developmental biology (evo-devo) was marked by the introduction of gene knockdown and deep sequencing technologies that are applicable to a wide range of species. These approaches allowed us to test the developmental role of specific genes in diverse species, to study biological processes that are not accessible in established models and, in some cases, to conduct genome-wide screens that overcome the limitations of the candidate gene approach. The recent discovery of CRISPR/Cas as a means of precise alterations into the genome promises to revolutionize developmental genetics. In this review we describe the development of gene editing tools, from zinc-finger nucleases to TALENs and CRISPR, and examine their application in gene targeting, their limitations and the opportunities they present for evo-devo. We outline their use in gene knock-out and knock-in approaches, and in manipulating gene functions by directing molecular effectors to specific sites in the genome. The ease-of-use and efficiency of CRISPR in diverse species provide an opportunity to close the technology gap that exists between established model organisms and emerging genetically-tractable species.
    EvoDevo 01/2014; 5:43. · 3.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introducing targeted changes in the genome of living cells or whole organisms makes it possible to solve many problems of basic science, biotechnology, and medicine. Target gene knockout in zygotes helps to study the functions of the gene in the corresponding organisms, while replacement of single nucleotide in DNA provides an opportunity to correct gene mutations and to treat hereditary disorders. Adding a gene into a proper genome region can be used to construct producer cells or organisms with certain properties. Such genomic manipulations are possible due to the technology known as genome editing. In this technology, a break is introduced into a certain chromosomal DNA region with an endonuclease recognizing a unique sequence, and DNA integrity is then restored by cell repair systems. Custom-designed endonucleases able to cleave a selected target sequence are necessary tools for genome editing. Programmable endonucleases of a new type were constructed on the basis of bacterial transcription activator-like (TAL) effectors (TALEs), marking an important step in the development of genome editing and promoting its broad application. The review considers the history of discovering TALEs and creating TALE nucleases and describes their advantages over zinc finger endonucleases, which were constructed earlier. A section focuses on the genetic modifications that can be performed using various genome editing techniques.
    Molecular Biology 05/2014; 48(3):305-318. · 0.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetics is currently one of the hottest topics in basic and biomedical research. However, to date, most of the studies have been descriptive in nature, designed to investigate static distribution of various epigenetic modifications in cells. Even though tremendous amount of information has been collected, we are still far from the complete understanding of epigenetic processes, their dynamics or even their direct effects on local chromatin and we still do not comprehend whether these epigenetic states are the cause or the consequence of the transcriptional profile of the cell. In this review, we try to define the concept of synthetic epigenetics and outline the available genome targeting technologies, which are used for locus-specific editing of epigenetic signals. We report early success stories and the lessons we have learned from them, and provide a guide for their application. Finally, we discuss existing limitations of the available technologies and indicate possible areas for further development.
    Clinical Epigenetics 01/2015; 7(1). · 6.22 Impact Factor


Available from