Article

Ginsenoside Rh2 inhibits osteoclastogenesis through down-regulation of NF-κB, NFATc1 and c-Fos.

Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, South Korea.
Bone (Impact Factor: 4.46). 03/2012; 50(6):1207-13. DOI: 10.1016/j.bone.2012.03.022
Source: PubMed

ABSTRACT Ginsenoside Rh2 is one of the most active components of red ginseng, controlling cancer and other metabolic diseases including osteoclast differentiation. However, the molecular mechanism underlying the inhibition of osteoclast differentiation by ginsenoside Rh2 remains poorly understood. In the present study, it was found that ginsenoside Rh2 suppressed osteoclast differentiation from bone marrow macrophages (BMMs) treated with receptor activator of nuclear factor κB ligand (RANKL) without any cytotoxicity. Ginsenoside Rh2 significantly reduced RANKL-induced expression of transcription factors, c-Fos and nuclear factor of activated T-cells (NFATc1), as well as osteoclast markers, TRAP and OSCAR. In defining the signaling pathways, ginsenoside Rh2 was shown to moderately inhibit NF-κB activation and ERK phosphorylation in response to RANKL stimulation in BMM cells without any effect on p38 and c-Jun N-terminal kinase (JNK). Finally, ginsenoside Rh2 blocked osteoporosis in vivo as confirmed by restored bone mineral density (BMD) and other markers associated osteoclast differentiation. Hence, it is suggested that ginsenoside Rh2 could suppress RANKL-induced osteoclast differentiation in vitro and in vivo through the regulation of c-Fos and NFATc1 expressions, not excluding the involvement of NF-κB and ERK. Ginsenoside Rh2 is also suggested to be developed as a therapeutic drug for prevention and treatment of osteoporosis.

0 Bookmarks
 · 
174 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective Juzentaihoto (JTX) is a traditional Japanese medicine that consists of 10 herbs. The purpose of this study was to evaluate the efficacy of multi-herbal medicine JTX as a preventive and therapeutic drug for periodontal bone resorption and for reducing restraint stress. Material and methods Porphyromonas gingivalis ATCC 33277 was used for testing the antibacterial activity of JTX and a rat experimental periodontitis model. To evaluate the effect of JTX against P. gingivalis infection, we determined the differences in alveolar bone loss among experimental groups. The concentrations of adrenocorticotropic hormones were measured as stress markers, and atrophy of the thymus and spleen was assessed. Results JTX had antibacterial activity against P. gingivalis ATCC 33277. JTX treatment of mouse bone marrow cells at a concentration of 0.1 μg/ml significantly inhibited osteoclast formation. Administration of JTX to rats with P. gingivalis infection and restraint stress significantly reduced alveolar bone loss compared with the case with just the combination of P. gingivalis infection and restraint stress. In the restrained groups, stress markers were elevated, and the thymus and spleen were atrophied. The groups with administration of JTX showed not only inhibition of the decrease of weight but also normalization of corticosterone and cortisol values. Conclusion JTX effectively inhibited restraint stress and osteoclastogenesis. It appears that the effects of JTX inhibit the destruction of periodontal tissue by suppressing stress. Our study demonstrated that JTX affects the correlation between restraint stress and periodontitis.
    Archives of Oral Biology. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (MCSF). Capric acid inhibited RANKL-mediated osteoclastogenesis in bone marrow-derived macrophages and suppressed RANKL-induced IkappaBalpha phosphorylation, p65 nuclear translocation, and NF-kappaB transcriptional activity. Capric acid further blocked the RANKL-stimulated activation of ERK without affecting JNK or p38. The induction of NFATc1 in response to RANKL was also attenuated by capric acid. In addition, capric acid abrogated M-CSF and RANKLmediated cytoskeleton reorganization, which is crucial for the efficient bone resorption of osteoclasts. Capric acid also increased apoptosis in mature osteoclasts through the induction of Bim expression and the suppression of ERK activation by M-CSF. Together, our results reveal that capric acid has inhibitory effects on osteoclast development. We therefore suggest that capric acid may have potential therapeutic implications for the treatment of bone resorption-associated disorders.
    Molecules and Cells 08/2014; · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation. Red ginseng is a steamed and dried Panax ginseng C.A. Meyer, which has been used as alternative medicine for thousands of years. This study was undertaken to investigate the effects of red ginseng extracts (RGE) on autoimmune arthritis in mice and humans and to delineate the underlying mechanism. RGE was orally administered three times a week to mice with arthritis. Oral administration of RGE markedly ameliorated clinical arthritis score and histologically assessed joint inflammation in mice with CIA. A significant reduction in STAT3 phosphorylation and a decrease in the number of Th17 cells were observed with RGE treatment. There was also a marked reduction in RANKL-induced osteoclastogenesis with treatment of RGE. The inhibitory effect of RGE on Th17 differentiation and osteoclastogenesis observed in mice was also confirmed in the subsequent experiments performed using human peripheral blood mononuclear cells. Our findings provide the first evidence that RGE can regulate Th17 and reciprocally promote Treg cells by inhibiting the phosphorylation of STAT3. Therefore, RGE can ameliorate arthritis in mice with CIA by targeting pathogenic Th17 and osteoclast differentiation, suggesting a novel therapy for treatment of RA.
    Mediators of Inflammation 01/2014; 2014:351856. · 2.42 Impact Factor

Full-text

Download
92 Downloads
Available from
Jun 2, 2014