Automated VOI Analysis in FDDNP PET Using Structural Warping: Validation through Classification of Alzheimer's Disease Patients

Department of Biomathematics, David Geffen School of Medicine at UCLA, Box 951766, Los Angeles, CA 90095, USA.
International Journal of Alzheimer's Disease 03/2012; 2012(4):512069. DOI: 10.1155/2012/512069
Source: PubMed


We evaluate an automated approach to the cortical surface mapping (CSM) method of VOI analysis in PET. Although CSM has been previously shown to be successful, the process can be long and tedious. Here, we present an approach that removes these difficulties through the use of 3D image warping to a common space. We test this automated method using studies of FDDNP PET in Alzheimer's disease and mild cognitive impairment. For each subject, VOIs were created, through CSM, to extract regional PET data. After warping to the common space, a single set of CSM-generated VOIs was used to extract PET data from all subjects. The data extracted using a single set of VOIs outperformed the manual approach in classifying AD patients from MCIs and controls. This suggests that this automated method can remove variance in measurements of PET data and can facilitate accurate, high-throughput image analysis.

Download full-text


Available from: Moses Quinn Wilks, Jul 10, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study is to develop an ensemble classifier with Merit Merge feature selection that will enhance efficiency of classification in a multivariate multiclass medical data for effective disease diagnostics. The large volumes of features extracted from brain Magnetic Resonance Images and neuropsychological tests for diagnosis lead to more complexity in classification procedures. A higher level of objectivity than what readers have is needed to produce reliable dementia diagnostic techniques. Ensemble approach which is trained with features selected from multiple biomarkers facilitated accurate classification when compared with conventional classification techniques. Ensemble approach for feature selection is experimented with classifiers like Naïve Bayes, Random forest, Support Vector Machine, and C4.5. Feature search is done with Particle Swarm Optimisation to retrieve the subset of features for further selection with the ensemble classifier. Features selected by the proposed C4.5 ensemble classifier with Particle Swarm Optimisation search, coupled with Merit Merge technique (CPEMM), outperformed bagging feature selection of SVM, NB, and Random forest classifiers. The proposed CPEMM feature selection found the best subset of features that efficiently discriminated normal individuals and patients affected with Mild Cognitive Impairment and Alzheimer’s Dementia with 98.7% accuracy.
    Computational and Mathematical Methods in Medicine 11/2015; 2015(3):1-11. DOI:10.1155/2015/676129 · 0.77 Impact Factor