Article

Reduction of EEG Theta Power and Changes in Motor Activity in Rats Treated with Ceftriaxone

Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy.
PLoS ONE (Impact Factor: 3.53). 03/2012; 7(3):e34139. DOI: 10.1371/journal.pone.0034139
Source: PubMed

ABSTRACT The glutamate transporter GLT-1 is responsible for the largest proportion of total glutamate transport. Recently, it has been demonstrated that ceftriaxone (CEF) robustly increases GLT-1 expression. In addition, physiological studies have shown that GLT-1 up-regulation strongly affects synaptic plasticity, and leads to an impairment of the prepulse inhibition, a simple form of information processing, thus suggesting that GLT-1 over-expression may lead to dysfunctions of large populations of neurons. To test this possibility, we assessed whether CEF affects cortical electrical activity by using chronic electroencephalographic (EEG) recordings in male WKY rats. Spectral analysis showed that 8 days of CEF treatment resulted in a delayed reduction in EEG theta power (7-9 Hz) in both frontal and parietal derivations. This decrease peaked at day 10, i.e., 2 days after the end of treatment, and disappeared by day 16. In addition, we found that the same CEF treatment increased motor activity, especially when EEG changes are more prominent. Taken together, these data indicate that GLT-1 up-regulation, by modulating glutamatergic transmission, impairs the activity of widespread neural circuits. In addition, the increased motor activity and prepulse inhibition alterations previously described suggest that neural circuits involved in sensorimotor control are particularly sensitive to GLT-1 up-regulation.

Full-text

Available from: Fiorenzo Conti, May 17, 2015
0 Followers
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's Disease (HD) is a fatally inherited neurodegenerative disorder caused by an expanded glutamine repeat in the N-terminal region of the huntingtin (HTT) protein. The result is a progressively worsening triad of cognitive, emotional, and motor alterations that typically begin in adulthood and end in death 10-20 years later. Autopsy of HD patients indicates massive cell loss in the striatum and its main source of input, the cerebral cortex. Further studies of HD patients and transgenic animal models of HD indicate that corticostriatal neuronal processing is altered long before neuronal death takes place. In fact, altered neuronal function appears to be the primary driver of the HD behavioral phenotype, and dysregulation of glutamate, the excitatory amino acid released by corticostriatal afferents, is believed to play a critical role. Although mutant HTT interferes with the operation of multiple proteins related to glutamate transmission, consistent evidence links the expression of mutant HTT with reduced activity of glutamate transporter 1 (rodent GLT1 or human EAAT2), the astrocytic protein responsible for the bulk of glutamate uptake. Here, we review corticostriatal dysfunction in HD and focus on GLT1 and its expression in astrocytes as a possible therapeutic target.
    07/2012; 2(2):57-66. DOI:10.1016/j.baga.2012.04.029
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Ceftriaxone, a β-lactam antibiotic, can selectively enhance the expression of glutamate transporter 1 (GLT1), the most abundant astrocytic glutamate transporter expressed in the cortex. It has been found to have neuroprotective effects when administered prior to brain ischemic damage or during the acute phase post-stroke, but its effects in chronic period have not been examined. Methods: We examined the effects of ceftriaxone on the acquisition of motor skill and the functional outcome after focal ischemic cortical lesions. In adult male rats, ceftriaxone (200 mg/kg) or vehicle was intraperitoneally injected daily for 5 days, a treatment regime previously established to upregulate GLT-1. This preceded 28 days of skilled reach training in intact animals or began 3 days following lesions, followed by 5 weeks of rehabilitative reach training. Results: In intact rats, ceftriaxone did not affect skill learning rate or final performance. Following ischemic lesions, though there was no significant difference in lesion sizes between groups, ceftriaxone exacerbated initial deficits in reaching performance. Conclusion: These findings of detrimental effects on motor functional outcome suggest that ceftriaxone may be more useful for neuroprotection during the acute phase of ischemia than for functional recovery in the post-acute period after ischemic damage.
    Restorative neurology and neuroscience 10/2012; 31(1). DOI:10.3233/RNN-2012-120245 · 4.18 Impact Factor