EGF-Induced EMT and Invasiveness in Serous Borderline Ovarian Tumor Cells: A Possible Step in the Transition to Low-Grade Serous Carcinoma Cells?

Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
PLoS ONE (Impact Factor: 3.53). 03/2012; 7(3):e34071. DOI: 10.1371/journal.pone.0034071
Source: PubMed

ABSTRACT In high-grade ovarian cancer cultures, it has been shown that epidermal growth factor (EGF) induces cell invasion by activating an epithelial-mesenchymal transition (EMT). However, the effect of EGF on serous borderline ovarian tumors (SBOT) and low-grade serous carcinomas (LGC) cell invasion remains unknown. Here, we show that EGF receptor (EGFR) was expressed, that EGF treatment increased cell migration and invasion in two cultured SBOT cell lines, SBOT3.1 and SV40 large T antigen-infected SBOT cells (SBOT4-LT), and in two cultured LGC cell lines, MPSC1 and SV40 LT/ST-immortalized LGC cells (ILGC). However, EGF induced down-regulation of E-cadherin and concurrent up-regulation of N-cadherin in SBOT cells but not in LGC cells. In SBOT cells, the expression of the transcriptional repressors of E-cadherin, Snail, Slug and ZEB1 were increased by EGF treatment. Treatment with EGF led to the activation of the downstream ERK1/2 and PI3K/Akt. The MEK1 inhibitor PD98059 diminished the EGF-induced cadherin switch and the up-regulation of Snail, Slug and ZEB1 and the EGF-mediated increase in SBOT cell migration and invasion. The PI3K inhibitor LY294002 had similar effects, but it could not block the EGF-induced up-regulation of N-cadherin and ZEB1. This study demonstrates that EGF induces SBOT cell migration and invasion by activating EMT, which involves the activation of the ERK1/2 and PI3K/Akt pathways and, subsequently, Snail, Slug and ZEB1 expression. Moreover, our results suggest that there are EMT-independent mechanisms that mediate the EGF-induced LGC cell migration and invasion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alteration of cancer cell toward mesenchymal phenotype has been shown to potentiate tumor aggressiveness by increasing cancer cell metastasis. Herein, we report the effect of triclosan, a widely used antibacterial agent found in many daily products, in enhancing the epithelial-to-mesenchymal transition (EMT) in aggressive anoikis resistant human H460 lung cancer cells. EMT has been long known to increase abilities of the cells to increase migration, invasion, and survival in circulating system. The present study reveals that treatment of the cancer cells with triclosan at the physiologically related concentrations significantly increased the colony number of the cancer cells assessed by tumor formation assay. Also, the mesenchymal-like morphology and decrease in cell-to-cell adhesion were observed in triclosan-treated cells. Importantly, western blot analysis revealed that triclosan-treated cells exhibited decreased E-cadherin, while the levels of EMT markers, namely N-cadherin, vimentin, snail and slug were found to be significantly up-regulated. Furthermore, EMT induced by triclosan treatment was accompanied by the activation of focal adhesion kinase/ATP dependent tyrosine kinase (FAK/Akt) and Ras-related C3 botulinum toxin substrate 1 (Rac1), which enhanced the ability of the cells to migrate and invade. In conclusion, we demonstrated for the first time that triclosan may potentiate cancer cells survival in detached condition and motility via the process of EMT. As mentioned capabilities are required for success in metastasis, the present study provides the novel toxicological information and encourages the awareness of triclosan use in cancer patients.
    PLoS ONE 10/2014; 9(10):e110851. DOI:10.1371/journal.pone.0110851 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: It has previously been shown that follicle-stimulating hormone (FSH) and its receptor contribute to epithelial ovarian cancer (EOC) development. Epithelial-mesenchymal transition (EMT) is the early event of metastasis in cancer. Therefore, the aim of this study was to investigate the roles of FSH and the FSH receptor (FSHR) in EMT of EOC. Methods: Ovarian cancer cells treated with various doses of FSH were used to investigate the effect of FSH on EMT. Small interfering RNAYmediated FSHR depletion or re-expression of FSHR by acute transfecting pcDNA-hFSHR plasmid was performed to determine the role of FSHR in FSH-induced EMT. Moreover, LY294002, a potent and specific cell-permeable inhibitor of phosphatidylinositol 3-kinases (PI3K), was selected to pretreat ovarian cancer cells to confirm whether PI3K/Akt signaling is involved in this event. Results: In the current study, FSH was found to induce the phenotypes of EMT including migration and invasion in EOC cells. Elevated FSHR levels promoted EMT, migration, and invasion, whereas small interfering RNAYmediated FSHR knockdown inhibited these processes. Moreover, the inhibition of FSH-induced PI3K/Akt signaling pathway attenuated Snail expression and the EMT process. Conclusions: Collectively, the findings of the current study indicate that FSH induced the EMT of ovarian cancer cells through the FSHR-PI3K/Akt-Snail signaling pathway.
    International Journal of Gynecological Cancer 11/2014; 24(9):1564-74. DOI:10.1097/IGC.0000000000000279 · 1.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although epithelial cell adhesion molecule (EpCAM) is overexpressed in human epithelial ovarian cancer (EOC), some contradictory results have been reported regarding the correlation between EpCAM overexpression and patient survival. In addition to this controversy, the function and regulation of EpCAM in EOC remain largely unknown. Here, we show that epidermal growth factor (EGF) up-regulates EpCAM expression by activating ERK1/2 signaling in a human EOC cell line, SKOV3. Additionally, EpCAM overexpression suppresses not only basal but also EGF-stimulated SKOV3 cell migration, whereas EpCAM knockdown increases both basal and EGF-stimulated cell migration in another human EOC cell line, OVCAR4. This study demonstrates the regulation of EpCAM and its role in mediating the effects of EGF on human EOC cell migration. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 01/2015; 457(3). DOI:10.1016/j.bbrc.2014.12.097 · 2.28 Impact Factor

Full-text (4 Sources)

Available from
Jun 5, 2014