Effects of succinylacetone on dimethylsulfoxide-mediated induction of heme pathway enzymes in mouse Friend virus-transformed erythroleukemia cells

University Paris 7, Faculty of Medicine X. Bichat, Department of Biochemistry, Hospital Louis Mourier, 92701 Colombes, France
Experimental Cell Research (Impact Factor: 3.56). 11/1984; DOI: 10.1016/0014-4827(84)90171-X

ABSTRACT Heme has been reported to exert a control over its own biosynthesis and to affect the erythroid differentiation process at different sites. In this study, succinylacetone, a powerful inhibitor of δ-aminolevulinic acid dehydrase was used to block heme synthesis and to study the effects of heme depletion on the dimethylsulfoxide (DMSO)-mediated induction of the heme pathway enzymes in Friend virus-transformed erythroleukemia cells. The presence of succinylacetone in the medium during the DMSO treatment (1) potentiates the induction of δ-aminolevulinic acid synthetase (the first enzyme of the pathway) and this effect is reversed by the addition of exogenous hemin; (2) does not affect the induction of δ-aminolevulinic acid dehydrase (the second enzyme); (3) prevents the induction of porphobilinogen deaminase (the third enzyme), since no increase could be detected in either the enzyme activity or the immunoreactive protein and this effect could not be reversed by the addition of exogenous hemin; (4) does not affect the induction of ferrochelatase. The possible role of heme or of intermediate metabolites of the pathway on the induction of these enzymes during the erythroid differentiation process is discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe five new mutations in the uroporphyrinogen decarboxylase (UROD) gene. All mutations were observed in conjunction with decreased erythrocyte UROD and clinical familial porphyria cutanea tarda (fPCT), (four families) or hepatoerythropoietic porphyria (HEP), (one family). The fPCT mutations included three point mutations that resulted in amino acid substitutions: a lysine to glutamine at amino acid position 253 (exon 7); a glycine to arginine at position 318 (exon 10); an isoleucine to threonine at position 334 (exon 10). The lysine to glutamine at amino acid position 253 was found in conjunction with a single C nucleotide deletion in exon 8 on the same allele of the UROD gene in the same family. This deletion resulted in a shift in the reading frame and the introduction of a premature stop codon 8 amino acids downstream. In the fourth family, a 31-bp deletion (nucleotides 828-858: exon 8) of the coding region, resulted in a frameshift and the introduction of a stop codon 19 amino acids downstream. A point mutation was observed in an individual diagnosed with HEP, resulting in an alanine to glycine change at amino acid position 80 and was present on both alleles. All mutations were confirmed in at least one other family member. The impact of these mutations on the function of the UROD protein was examined using in vitro protein expression and with activity assessed using pentacarboxylic acid porphyrinogen I as a substrate for UROD. Although three mutations reduced UROD activity to < 15% of normal, one resulted in a UROD protein with 50% functional activity and the other had near normal activity. These results indicate that many different genetic lesions of the UROD gene are associated with fPCT.
    Blood 11/1996; 88(9):3589-600. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ferrochelatase, which catalyses the last step in haem biosynthesis, i.e. the insertion of Fe(II) into protophorphyrin IX, is present in all cells, but is particularly abundant in erythroid cells during haemoglobinization. Using mouse ferrochelatase cDNA as a probe two ferrochelatase transcripts, having lengths of 2.9 kb and 2.2 kb, were found in extracts of mouse liver, kidney, brain, muscle and spleen, the 2.9 kb transcript being more abundant in the non-erythroid tissues and the 2.2 kb transcript more predominant in spleen. In mouse erythroleukemia cells the 2.9 kb ferrochelatase transcript is also more abundant; however, following induction of erythroid differentiation by dimethyl sulphoxide there is a preferential increase in the 2.2 kb transcript, which eventually predominates. With mouse reticulocytes, the purest immature erythroid cell population available, over 90% of the total ferrochelatase mRNA is present as the 2.2 kb transcript. Since there is probably only one mouse ferrochelatase gene, the occurrence of two ferrochelatase transcripts could arise from the use of two putative polyadenylation signals in the 3' region of ferrochelatase DNA. This possibility was explored by using a 389 bp DNA fragment produced by PCR with synthetic oligoprimers having sequence similarity with a region between the polyadenylation sites. This fragment hybridized only to the 2.9 kb ferrochelatase transcript, indicating that the two transcripts differ at their 3' ends and suggesting that the 2.2 kb transcript results from the utilization of the upstream polyadenylation signal. The preferential utilization of the upstream polyadenylation signal may be an erythroid-specific characteristic of ferrochelatase gene expression.
    Biochemical Journal 07/1993; 292 ( Pt 2):343-9. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tryptophan (TRP) is the precursor of melatonin, the primary secretory product of the pineal gland. Hepatic heme deficiency decreases the activity of liver tryptophan pyrrolase, leading to increased plasma TRP and serotonin. As a paradox, patients with attacks of acute intermittent porphyria (AIP), exhibit low nocturnal plasma melatonin levels. This study using a rat experimental model was designed to produce a pattern of TRP and melatonin production similar to that in AIP patients. Pineal melatonin production was measured in response to: (a) a heme synthesis inhibitor, succinylacetone, (b) a heme precursor, delta-aminolevulinic acid (Ala), (c) a structural analogue of Ala, gamma-aminobutyric acid. Studies were performed in intact rats, perifused pineal glands, and pinealocyte cultures. Ala, succinylacetone, and gamma-aminobutyric acid significantly decreased plasma melatonin levels independently of blood TRP concentration. In the pineal gland, the key enzyme activities of melatonin synthesis were unchanged for hydroxyindole-O-methyltransferase and decreased for N-acetyltransferase. Our results strongly suggest that Ala overproduced by the liver acts by mimicking the effect of gamma-aminobutyric acid on pineal melatonin in AIP. They also support the view that Ala acts as a toxic element in the pathophysiology of AIP.
    Journal of Clinical Investigation 02/1996; 97(1):104-10. · 12.81 Impact Factor