Modeling of a pilot-scale trickle bed reactor for the catalytic oxidation of phenol

Department of Chemical Engineering, Hong Kong University of Science & Technology, Hong Kong, China; Department of Control Science & Engineering, Zhejiang University, Hangzhou 310027, China; School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, China; ARC Centre for Functional Nanomaterials, University of Queensland, Brisbane QLD 4072, Australia
Separation and Purification Technology 01/2009; DOI: 10.1016/j.seppur.2009.03.021

ABSTRACT A mathematical model was developed to simulate the catalytic wet air oxidation (CWAO) of aqueous phenol in a trickle bed reactor (TBR). Both ‘axial dispersion’ and ‘plug flow’ models were proposed. ‘Steady-state’ mass transfers across different phases inside the reactor have all been considered in parallel with oxidation reactions catalyzed by heterogeneous copper catalyst supported on activated carbon. The changes in the concentrations of oxygen and phenol in various phases were thus depicted as a function of bed length. In order to validate the accuracy of the established TBR model, a series of experiments on phenol oxidation were performed on a pilot-scale TBR containing 5.6 l of catalysts. The model was found able to give satisfactory predictions for nearly half of all the runs. The discrepancies between the experimental and modeling results were investigated for the less promising runs. It was also noticed that similar simulation results could be attained from ‘axial dispersion’ model against ‘plug flow’ model. Following the discussion on the changes of phenol and oxygen concentrations in the various phases, it is finally concluded that the performance of the TBR of this study depends largely on gas-to-liquid mass transfer process. Further suggestions with regards to reactor optimization are also proposed on the basis of experimental outcome.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this research, the suitability of almond shell as a bio-waste resource in wood based composite manufacturing was investigated. Particleboards containing different almond shell particle rations were made using urea–formaldehyde (UF) resin. Some chemical properties of almond shell (holocellulose, α cellulose, lignin and ash contents, alcohol–benzene solubility, 1% NaOH solubility, hot and cold water solubility), mechanical (modulus of rupture, modulus of elasticity and internal bond strength) and physical properties (thickness swelling and water absorption) of the particleboards were determined. The addition of almond shell particles greatly improved the water resistance of the panels. However, flexural properties and internal bond strength decreased with increasing almond shell particle content. The amount of almond shell particles at most should be 30% in the mixture to meet the standard required for mechanical properties. Conclusively, almond shell, an annual agricultural residue, could be utilized with mixture of wood particles in the particleboard manufacturing.
    Composites Part B-engineering - COMPOS PART B-ENG. 04/2012;