Article

Adaptive surface data compression

Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Telecommunications Institute, University of Erlangen-Nuremberg, Cauerstraβe 7, 91058 Erlangen, Germany; Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraβe 11, 91054 Erlangen, Germany
Signal Processing (Impact Factor: 2.24). 01/1997; DOI: 10.1016/S0165-1684(97)00047-9

ABSTRACT Three-dimensional (3D) visualization techniques are becoming an important tool for medical applications. Computer-generated 3D reconstructions of the human skull are used to build stereolithographic models, which can be used to simulate surgery or to create individual implants. Anatomy-based 3D models are used to simulate the physical behaviour of human organs. These 3D models are usually displayed by a polygonal description of their surface, which requires hundreds of thousands of polygons. For interactive applications this large number of polygons is a major obstacle. We have improved an adaptive compression algorithm that significantly reduces the number of triangles required to model complex objects without losing visible detail and have implemented it in our surgery simulation system. We present this algorithm using human skull and skin data and describe the efficiency of this new approach.ZusammenfassungComputerbasierte dreidimensionale Visualisierungstechniken haben im letzten Jahrzehnt Einzug in die Medizin gehalten. Aus den computergenerierten dreidimensionalen Rekonstruktionen des Gesichtsschädels werden unter anderem mittels Stereolithographie reale Modelle erstellt, an denen geplante chirurgische Eingriffe simuliert werden können, oder aber die 3D-Rekonstruktionen dienen dazu, patientenangepaβte Implantate herzustellen. Die Geometrie solch komplexer 3D Modelle wird im allgemeinen mit Hilfe hunderttausender einzelner, planarer Polygone beschrieben. Eine interaktive Darstellung dieser Modelle ist oftmals nicht mehr möglich. In dieser Arbeit beschreiben wir ein erweitertes adaptives Verfahren zur signifikanten Reduzierung von Polygonoberflächen, ohne daβ damit ein Detailverlust in der Darstellung verbunden ist. Dieses Reduzierungsverfahren wurde in ein Operationsplammgssystem integriert und umfassend verifiziert. An zwei medizinischen Datensätzen, der 3D Rekonstruktion der Hautoberfläche und des Gesichtsschädels, wird die Leistungsfähigkeit dieses neuen Verfahrens aufgezeigt.RésuméLes techniques de visualisation tri-dimensionnelle sont en train de devenir un outil important pour les applications médicales. Des reconstructions 3D du squelette humain générées par ordinateur sont utilisées pour construire des modèles stéréolithographiques qui peuvent être utilisés pour simuler une opération chirurgicale ou pour créer des implants individuels. Des modèles tri-dimensionnels basés sur l'anatomie sont utilisés pour simuler le comportement physique d'organes humains. Ces modèles 3D sont en général affichés à l'aide d'une description polygonale de leur surface, ce qui nécessite des centaines de milliers de polygones. Pour les applications interactives, ce grand nombre de polygones est un obstacle majeur. Nous avons amélioré un algorithme de compression adaptatif qui réduit significativement le nombre de triangles requis pour modéliser des objets complexes sans perdre de détails visibles, et nous l'avons implémenté dans notre système de simulation de chirurgie. Nous présentons cet algorithme en utilisant des données de squelette et de peau humains et décrivons l'efficacité de cette nouvelle approche.

1 Bookmark
 · 
54 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel approach is proposed for simulating the deformation of the facial soft tissues in the craniofacial surgery simulation. A nonlinear finite mixed-element model (NFM-EM) based on solid-shell elements and Lagrange principle of virtual work is proposed, which addresses the heterogeneity in geometry and material properties found in the soft tissues of the face. Moreover, after the investigation of the strain-potential models, the biomechanical characteristics of skin, muscles and fat are modeled with the most suitable material properties. In addition, an improved contact algorithm is used to compute the boundary conditions of the soft tissue model. The quantitative validation and the comparative results with other models proved the effectiveness of the approach on the simulation of complex soft tissues. The average absolute value of errors stays below 0.5 mm and the 95% percentiles of the distance map is less than 1.5 mm. NFM-EM promotes the accuracy and effectiveness of the soft tissue deformation, and the effective contact algorithm bridges the bone-related planning and the prediction of the target face.
    International Journal of Computer Assisted Radiology and Surgery 11/2009; 4(6):579-87. · 1.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While deformable object modeling has been studied by computer graphics specialists for more than two decades, only a few applications in the field of surgical simulation have been developed which provide both real-time and physically realistic modeling of complex, nonlinear tissue deformations. Particularly in craniofacial surgery, the prediction of soft-tissue changes--which result from alterations in the underlying bone structure--is critical to the surgical outcome. The prediction these tissue changes and, therefore, the prognosis of the postoperative appearance of the patient, is still based on empirical studies of the relationship between bone and tissue movements: There exists no physical model which takes into account the individual patient anatomy to simulate the resulting tissue changes during craniofacial surgery. In this article we present two different deformable tissue models which are intergrated in an interactive surgical simulation test bed. Both techniques allow precise preoperative simulation of the resulting soft tissue changes during craniofacial surgery and visualization of the patient's postoperative appearance. The different deformable models are described in detail and both are applied to the same craniofacial case study. The simulation results are shown and compared with regard to the speed and accuracy of the prediction of the patient's postoperative appearance.
    Computer Aided Surgery 02/1998; 3(5):228-38. · 0.78 Impact Factor
  • Source

Full-text (2 Sources)

View
105 Downloads
Available from
May 29, 2014