The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers

Chemical Engineering Research Group, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, Republic of South Africa
International Journal of Heat and Mass Transfer 01/1985; DOI: 10.1016/0017-9310(85)90249-2

ABSTRACT It is well established that the inclination angle between plate corrugations and the overall flow direction is a major parameter in the thermohydraulic performance of plate heat exchangers. Application of an improved flow visualization technique has demonstrated that at angles up to about 80° the fluid flows mainly along the furrows on each plate. A secondary, swirling motion is imposed on the flow along a furrow when its path is crossed by streams flowing along furrows on the opposite wall. Through the use of the electrochemical mass transfer analogue, it is proved that this secondary motion determines the transfer process; as a consequence of this motion the transfer is fairly uniformly distributed across the width of the plates. The observed maximum transfer rate at an angle of about 80° is explained from the observed flow patterns. At higher angles the flow pattern becomes less effective for transfer ; in particular at 90° marked flow separation is observed.RésuméL'angle d'inclinaison entre les corrugations et la direction générale de l'écoulement représente un paramètre important dans la performance thermodynamique d'un échangeur de chaleur à plaques. L'application d'une technique améliorée pour la visualisation de l'écoulement a démontré qu'à des angles jusqu'à 80° le liquide coule essentiellement le long des corrugations dans chaque plaque. Un tourbillon secondaire est imposé sur l'écoulement le long d'une corrugation par l'interaction avec des écoulements le long de la paroi opposée. L'application de l'analogie électrochimique du transfert de matière prouve que ce tourbillon secondaire détermine le processus de transfert ; comme conséquence de ce mouvement il résulte une distribution assez équilibrée du transfert sur la largeur des plaques. Le maximum de la vitesse de transfert observé à un angle d'environ 80° est expliqué à base du profil de l'écoulement. A des angles plus élevés le profil de l'écoulement devient moins efficace pour le transfert; en particulier à un angle de 90° il résulte une nette séparation de l'écoulement.ZusammenfassungDer Neigungswinkel zwischen Plattenwellen und der allgemeinen Fliessrichtung ist ein wichtiger Parameter in der thermodynamischen Leistung eines Plattenwärme-austauschers. Die Anwendung einer verbesserten Technik der Sichtbarmachung der Fliessbewegung hat bewiesen, dass bei Winkeln bis 80° die Flüssigkeit grösstenteils längs der Furchen an jeder Platte fliesst. Die Strömung längs einer Furche erfährt eine sekundäre Wirbelbewegung durch die querlaufenden Strömungen längs der entgegengesetzten Wand. Die Anwendung der elektrochemischen Massenübertragungsanalogie liefert den Beweis, dass diese sekundäre Wirbelbewegung den Übertragungsprozess bestimmt ; als Konsequenz dieser Bewegung wird eine ziemlich gleichmässige Verteilung der Übertragung über die Breite der Platte erreicht. Das beobachtete Maximum der Übertragungsgeschwindigkeit bei einem Winkel von ungefähr 80° wird durch das beobachtete Fliessprofil erklärt. Bei höheren Winkeln wird das Fliessprofil weniger effektiv für die Übertragung; in einzelnen erscheint bei 90° eine klar sichtbare Trennung des Flusses.РефератYcтaнoвлeнo, чтo yгoл нaклoнa мeждy выcтyпaми плacтин и нaпpaвлeниeм пoтoкa являeтcя ocнoвным тepмoгидpaвличecким пapaмeтpoм плacтинчaтыч тeплooбмeнникoв. Пpимe-нeниe ycoвepшeнcтвoвaннoгo мeтoдa визyaлизaции тeчeния пoкaзaлo, чтo пpи yглaч вплoть дo 80° жидкocть движeтcя в ocнoвнoм вдoль выeмoк нa кaждoй плacтинe. Bтopичнoe зaкpyчeннoe движe-ниe нaлaгaeтcя нa тeчeниe вдoль выeмки в тoм cлyчae, кoгдa нaпpaвлeниe движeния пepeceкaeтcя пoтoкaми, движyшимиcя вдoль выeмoк нa пpoтивoпoлoжнoй cтeнкe. C пoмoщью элeктpoчими-чecкoй aиaлoгии мaccoпepeнoca пoкaзaнo, чтo этo втopичнoe движeниe oпpeдeляeт пpoцecc пepe-нoca. кaк cлeдcтвиe этoгo движeния пepeнoc пoчти oднopoднo pacпpeдeляeтcя пoпepeк шиpины плacтин. Пoлyчeннaя мaкcимaльнaя cкopocть тeплoпepeнoca пpи yглaч oкoлo 80° oбьяcняeтcя нaблюдaeмoй кapтинoй oбтeкaния. Пpи бoльшич yглaч oбтeкaния cтpyктypa тeчeния мeньшe влияeт нa пpoцecc пepeнoca, в чacтнocти, пpи 90° нaблюдaeтcя зaмeтный oтpыв пoтoкa.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Plate Heat Exchangers have many applications in the food, petrochemical, power plant, oil and chemical industry. Compared to other types of heat exchangers, such as shell and tube, plate heat exchangers are commonly used because of their compactness, ease of production, sensitivity, easy care after set-up and efficiency. Basically, the plate heat exchanger is a series of individual plates that pressed between two heavy and covers. Depending on the application the heat exchanger, these plates are gasketed, welded or brazed together. The pressed pattern on each plate surface induces turbulence and minimizes stagnant areas and fouling. Unlike shell and tube heat exchangers, which can be custom-built to meet almost any capacity and operating conditions, the plates for plate and frame heat exchangers are mass-produced using expensive dies and presses. Although the plate heat exchangers are made from standard parts, each one is custom designed as variation in the chevron angle, flow path or flow gap can alter the number of transfer units in the heat exchangers. Decreasing the chevron angle from 90 o , the path becomes more tortuous and offers greater hydrodynamic resistance giving rise to high NTU (The number of transfer unit) characteristics. Also, it is possible to use a combination of different plates to create an intermediate NTU passage, which can be used to meet a specific NTU requirement. Focke.W.W [1] suggested that one of the important parameters in the thermal performance of the plate heat exchangers is the inclination angle between plate corrugations and the overall flow direction. Mehrabian and Pouter [2] investigated the local hydrodynamic and thermal characteristics of the flow between two identical APV SR3 plates. They also studied the effect of corrugation angle on the thermal performance of the heat exchanger when plate spacing is fixed. Laminar periodically developed forced convection in sinusoidal corrugated-plate channels with uniform wall temperature and single-phase constant property flows was considered by Metwally and Mbanglik [3]. Gradeck, [4] conducted experiments in order to study the effects of hydrodynamic conditions on the enhancement of heat transfer. They performed these experiments for a wide range of Reynolds numbers. Finally, they pointed out a strong relation between the wall velocity gradient and the Nusselt number. Bobbili and Sunden [5] conducted experimental investigations to find the flow and the pressure difference across the port to channel in plate heat exchangers for a wide range of Reynolds numbers ()
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plate heat exchangers (PHE) have consolidated their position as key components of modern heating processes. They are widely accepted as the most suitable design for heat transfer applications in various processes, including the field of energy-efficient district heating (DH). This study refers to new DH coupling and control applied to a consumer substation. The concept introduces a new mass flow control model optimising the primary and secondary water streams to achieve remarkably higher temperature cooling in a new low temperature programme with diminished pressure losses. Here the operation of the ring network and the mass flow control in the substation are studied theoretically. A calculation procedure and transient models were constructed for the DH network, building structures, and heating heat exchangers. The PHE and its operation in the substation were studied by means of a corrugated plate model with five vertical parts and 10 elements. Variations in the flow rates, pressure losses, and overall heat transfer coefficients were received for the selected days. As a result almost equal heat capacity flows were found between the hot and cold sides of the PHE with maximum temperature cooling. The key performance factors of the heat exchanger, NTU and effectiveness, were monitored and the mean values obtained were 9.2 and 0.9, respectively.
    Energy and Buildings 01/2014; 80:276–289. · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Single-phase, periodically developed, constant property, laminar forced convection in two dimensional and sinusoidal corrugated ducts, which are maintained at uniform wall temperature, are considered. The governing differential equations for continuity, momentum, and energy transfer are solved computationally using finite-volume techniques, where the pressure term is handled by the SIMPLE algorithm. The computational grid is non orthogonal and non-uniform, and it is generated algebraically. All the dependent variables are stored in a non-staggered manner. Numerical solutions are obtained for different corrugation aspect ratios (γ=2A/L), plate spacing ratio (ε=S/2A), flow rates (Re) and different flow attack angles (φ). In corrugated ducts, the flow pattern changes drastically with Reynolds number and the flow gets separated at a critical Re. This is because the pressure distribution ceases to be linear and local variations of pressure cause flow to separate. The size of the separation region is seen to be a function of Re, γ and ε and it increases with increasing Re and γ. With increasing ε, however, it first increases and then starts to decrease after a critical ε is reached. This behavior is also seen in the friction factor and Nusselt number results, which increase to peak values corresponding to the critical ε value, and then begin to decrease. Both friction factor and Nusselt number results are presented for different γ and ε in the two-dimensional case, for a wide range of flow conditions (100≤Re≤1000), and for different flow attack angles (φ).
    International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ). 09/2012; 2(3):36-55.