Article

The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers

Chemical Engineering Research Group, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, Republic of South Africa
International Journal of Heat and Mass Transfer (Impact Factor: 2.52). 08/1985; 28(8):1469-1479. DOI: 10.1016/0017-9310(85)90249-2

ABSTRACT It is well established that the inclination angle between plate corrugations and the overall flow direction is a major parameter in the thermohydraulic performance of plate heat exchangers. Application of an improved flow visualization technique has demonstrated that at angles up to about 80° the fluid flows mainly along the furrows on each plate. A secondary, swirling motion is imposed on the flow along a furrow when its path is crossed by streams flowing along furrows on the opposite wall. Through the use of the electrochemical mass transfer analogue, it is proved that this secondary motion determines the transfer process; as a consequence of this motion the transfer is fairly uniformly distributed across the width of the plates. The observed maximum transfer rate at an angle of about 80° is explained from the observed flow patterns. At higher angles the flow pattern becomes less effective for transfer ; in particular at 90° marked flow separation is observed.RésuméL'angle d'inclinaison entre les corrugations et la direction générale de l'écoulement représente un paramètre important dans la performance thermodynamique d'un échangeur de chaleur à plaques. L'application d'une technique améliorée pour la visualisation de l'écoulement a démontré qu'à des angles jusqu'à 80° le liquide coule essentiellement le long des corrugations dans chaque plaque. Un tourbillon secondaire est imposé sur l'écoulement le long d'une corrugation par l'interaction avec des écoulements le long de la paroi opposée. L'application de l'analogie électrochimique du transfert de matière prouve que ce tourbillon secondaire détermine le processus de transfert ; comme conséquence de ce mouvement il résulte une distribution assez équilibrée du transfert sur la largeur des plaques. Le maximum de la vitesse de transfert observé à un angle d'environ 80° est expliqué à base du profil de l'écoulement. A des angles plus élevés le profil de l'écoulement devient moins efficace pour le transfert; en particulier à un angle de 90° il résulte une nette séparation de l'écoulement.ZusammenfassungDer Neigungswinkel zwischen Plattenwellen und der allgemeinen Fliessrichtung ist ein wichtiger Parameter in der thermodynamischen Leistung eines Plattenwärme-austauschers. Die Anwendung einer verbesserten Technik der Sichtbarmachung der Fliessbewegung hat bewiesen, dass bei Winkeln bis 80° die Flüssigkeit grösstenteils längs der Furchen an jeder Platte fliesst. Die Strömung längs einer Furche erfährt eine sekundäre Wirbelbewegung durch die querlaufenden Strömungen längs der entgegengesetzten Wand. Die Anwendung der elektrochemischen Massenübertragungsanalogie liefert den Beweis, dass diese sekundäre Wirbelbewegung den Übertragungsprozess bestimmt ; als Konsequenz dieser Bewegung wird eine ziemlich gleichmässige Verteilung der Übertragung über die Breite der Platte erreicht. Das beobachtete Maximum der Übertragungsgeschwindigkeit bei einem Winkel von ungefähr 80° wird durch das beobachtete Fliessprofil erklärt. Bei höheren Winkeln wird das Fliessprofil weniger effektiv für die Übertragung; in einzelnen erscheint bei 90° eine klar sichtbare Trennung des Flusses.РефератYcтaнoвлeнo, чтo yгoл нaклoнa мeждy выcтyпaми плacтин и нaпpaвлeниeм пoтoкa являeтcя ocнoвным тepмoгидpaвличecким пapaмeтpoм плacтинчaтыч тeплooбмeнникoв. Пpимe-нeниe ycoвepшeнcтвoвaннoгo мeтoдa визyaлизaции тeчeния пoкaзaлo, чтo пpи yглaч вплoть дo 80° жидкocть движeтcя в ocнoвнoм вдoль выeмoк нa кaждoй плacтинe. Bтopичнoe зaкpyчeннoe движe-ниe нaлaгaeтcя нa тeчeниe вдoль выeмки в тoм cлyчae, кoгдa нaпpaвлeниe движeния пepeceкaeтcя пoтoкaми, движyшимиcя вдoль выeмoк нa пpoтивoпoлoжнoй cтeнкe. C пoмoщью элeктpoчими-чecкoй aиaлoгии мaccoпepeнoca пoкaзaнo, чтo этo втopичнoe движeниe oпpeдeляeт пpoцecc пepe-нoca. кaк cлeдcтвиe этoгo движeния пepeнoc пoчти oднopoднo pacпpeдeляeтcя пoпepeк шиpины плacтин. Пoлyчeннaя мaкcимaльнaя cкopocть тeплoпepeнoca пpи yглaч oкoлo 80° oбьяcняeтcя нaблюдaeмoй кapтинoй oбтeкaния. Пpи бoльшич yглaч oбтeкaния cтpyктypa тeчeния мeньшe влияeт нa пpoцecc пepeнoca, в чacтнocти, пpи 90° нaблюдaeтcя зaмeтный oтpыв пoтoкa.

5 Followers
 · 
227 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The application of nano-fluids is thought to have a strong potential for enhancing the heat transfer characteristics of the corrugated plate heat exchanger-PHE. The corrugated PHE is one of the most versatile and wide using types of heat exchangers. In this study, an experimental test loop has been constructed to study the PHE thermal characteristics; heat transfer coefficient, effectiveness, transmitted power and pressure drop at different concentrated volume fractions of AL2O3 nano-material (1e4%) in pure liquid water as a base fluid. The measured heat transfer coefficient results were compared and verified against a theoretical model, a reasonable consistence was noticed. A pronounced increase in both the heat transfer coefficient and the transmitted power was observed by increasing the nano-material concentration. The maximum increase in heat transfer coefficient is reached 13% for a nano-fluid concentration of 4% vol. However, the increase in heat transfer coefficient is up to 13% under an uncertainty of 9.8%, at constant Re number. If it is compared at constant flow rate, this marginal enhancement will be further reduced. So the application of nano-fluids as a strong potential for enhancing the heat transfer in the corrugated PHE is doubtful for the current study. Both the pressure drop and the required pumping power were increased with the increase in nanofluid concentration and Reynolds number value. The maximum increase in pressure drop was recorded 45% above the base fluid value at 4% vol. of nanofluid, while the pumping power was recorded 90% higher due to the dual effect of increase in both the pressure drop and the volumetric flow, where the constant Reynolds number condition requires more volumetric flow to compensate the kinematic viscosity effect on Reynolds number. A further research work for the same field is required to remove the inauspicious between different researchers.
    Applied Thermal Engineering 01/2013; 52. · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three nanofluids comprising of aluminum oxide, copper oxide and silicon dioxide nanoparticles in ethylene glycol and water mixture have been studied theoretically to compare their performance in a compact minichannel plate heat exchanger (PHE). The study shows that for a dilute particle volumetric concentration of 1%, all the nanofluids show improvements in their performance over the base fluid. Comparisons have been made on the basis of three important parameters; equal mass flow rate, equal heat transfer rate and equal pumping power in the PHE. For each of these cases, all three nanofluids exhibit increase in convective heat transfer coefficient, reduction in the volumetric flow rate and reduction in the pumping power requirement for the same amount of heat transfer in the PHE. On the cold fluid side of the heat exchanger, a coolant, HFE-7000, has been studied, which has the potential for application in extremely low temperatures, but has not been investigated widely in the literature. Experimental data measured from a minichannel PHE in a test loop using water as the base fluid have validated the test apparatus with excellent agreement of predicted heat transfer rate and the overall heat transfer coefficient with the experimental values. From experiments on a 0.5% aluminum oxide nanofluid, preliminary correlations for the Nusselt number and the friction factor for nanofluid flow in a PHE has been derived. This apparatus will be useful to test different kinds of nanofluids to ultimately determine the effects of parameters such as: volumetric concentration, particle size and base fluid properties on thermal and fluid dynamic performance of nanofluids in compact heat exchangers.
    International Journal of Heat and Mass Transfer 04/2014; 71:732-746. DOI:10.1016/j.ijheatmasstransfer.2013.12.072 · 2.52 Impact Factor