Article

Exergy analysis of solid-oxide fuel-cell (SOFC) systems

Department of Applied Mechanics, Thermodynamics and Fluid Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
Energy (Impact Factor: 4.16). 01/1997; DOI: 10.1016/S0360-5442(96)00119-3

ABSTRACT The exergy concept has been used to analyze two methane-fueled SOFC systems. The systems include preheating of fuel and air, reforming of methane to hydrogen, and combustion of the remaining fuel in an afterburner. An iterative computer program using a sequential-modular approach was developed and used for the analyses. Simulation of an SOFC system with external reforming yielded first-law and second-law efficiencies of 58 and 56%, respectively, with 600% theoretical air. Heat released from the afterburner was used to reform methane, vaporize water, and preheat air and fuel. When these heat requirements were satisfied, the exhaust-gas temperature was so low that it could only be used for heating rooms or water. Because of heat requirements in the system, fuel utilization (FU) in the FC was limited to 75%. The remaining fuel was used for preheating and reforming. Reduced excess air led to reduced heat requirements and the possibility of a higher FU in the FC. Irreversibilities were also reduced and efficiencies increased. Recycling fuel and water vapor from the FC resulted in first-law and second-law efficiencies of 75.5 and 73%, respectively, with 600% theoretical air, vaporization of water was avoided and the FU was greater.

1 Bookmark
 · 
149 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper deals with an exergetic performance analysis of a gas turbine cycle integrated with SOFCs with internal reforming. As the efficiency of a gas turbine cycle is mainly defined by the maximum temperature at the turbine inlet, this temperature is fixed at 1573 K for the analysis. In the cycle considered, the high-temperature gaseous flow from the turbine heats the input flows of natural gas and air, and is used to generate pressurized steam which is mixed with natural gas at the SOFC stack inlet to facilitate its conversion. The application of SOFCs provides the opportunity to reduce the exergy losses of the most irreversible process in the system: fuel combustion. Depending on the SOFC stack efficiency, the energy efficiency of the combined cycle reaches 70–80% which compares well to the efficiencies of 54–55% typical of conventional combined power generation cycles. Parametric studies are also undertaken to investigate how energy and exergy efficiencies of the integrated system change with variations in operating conditions. An increase in the efficiency of SOFCs is attained by increasing the fuel cell active area. Achieving the highest efficiency of the SOFC stack leads to a significant and non-proportional increase in the stack size and cost, and simultaneously to a decrease in steam generation, reducing the steam/methane ratio at the anode inlet and increasing the possibility of catalyst coking. Accounting for these factors, likely operating conditions of the SOFC stack in combination with a gas turbine cycle are presented.
    Journal of Energy Resources Technology-transactions of The Asme - J ENERG RESOUR TECHNOL. 01/2009; 131(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, an analytical model of a micro solid oxide fuel cell (SOFC) system fed by butane is introduced and analyzed in order to optimize its exergetic efficiency. The micro SOFC system is equipped with a partial oxidation (POX) reformer, a vaporizer, two pre-heaters, and a post-combustor. A one-dimensional (1D) polarization model of the SOFC is used to examine the effects of concentration overpotentials, activation overpotentials, and ohmic resistances on cell performance. This 1D polarization model is extended in this study to a two-dimensional (2D) fuel cell model considering convective mass and heat transport along the fuel cell channel and from the fuel cell to the environment. The influence of significant operational parameters on the exergetic efficiency of the micro SOFC system is discussed. The present study shows the importance of an exergy analysis of the fuel cell as part of an entire thermodynamic system (transportable micropowerplant) generating electric power.
    Journal of Power Sources 01/2006; 158:333-347. · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: On the purpose to perform as functional layer of SOFCs operating on methane fuel, NiFe–ZrO2 alloy catalysts have been synthesized and investigated for methane partial oxidation reactions. Ni4Fe1–ZrO2 shows catalytic activity comparable to that of Ni–ZrO2 and superior to other Fe-containing catalysts. In addition, O2-TPO analysis indicates iron is also prone to coke formation; as a result, most of NiFe–ZrO2 catalysts do not show improved coking resistance than Ni–ZrO2. Anyway, Ni4Fe1–ZrO2 (Ni:Fe = 4:1 by weight) prepared by glycine-nitrate process shows somewhat less carbon deposition than the others. However, Raman spectroscopy demonstrates that the addition of Fe does reduce the graphitization degree of the deposited carbon, suggesting the easier elimination of carbon once it is deposited over the catalyst. Ni4Fe1–ZrO2 has an excellent long-term stability for partial oxidation of methane reaction at 850 °C. A solid oxide fuel cell with conventional nickel cermet anode and Ni4Fe1–ZrO2 functional layer is operated on CH4–O2 gas mixture to yield a peak power density of 1038 mW cm−2 at 850 °C, which is comparable to that of hydrogen fuel. In summary, the Ni4Fe1–ZrO2 catalyst is potential catalyst as functional layer for solid-oxide fuel cells operating on methane fuel.
    International Journal of Hydrogen Energy 06/2012; 37(12):9801–9808. · 3.55 Impact Factor