Exchange transfusion with fluorocarbon for studying synaptically evoked optical signal in rat cortex

Biophysics Division, Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
Brain Research Protocols (Impact Factor: 1.82). 03/2000; DOI: 10.1016/S1385-299X(99)00051-3

ABSTRACT Optical imaging of intrinsic signal is a powerful technique for studying the functional organization of the brain [T. Bonhoeffer, D.S. Kim, D. Malonek, D. Shoham, A. Grinvald, Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex, Eur. J. Neurosci. 7 (1995) 1973–1988; M. Hubener, D. Shoham, A. Grinvald, T. Bonhoeffer, Spatial relationships among three columnar systems in cat area 17, J. Neurosci. 17 (1997) 9270–9284; D. Malonek, A. Grinvald, Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping, Science 272 (1996) 551–554; A. Shmuel, A. Grinvald, Functional organization for direction of motion and its relationship to orientation maps in cat area 18, J. Neurosci. 16 (1996) 6945–6964] , , and . Three components of intrinsic optical signal can be distinguished. Two of these components can be attributed either to changes in blood volume or to changes in oxygen consumption [R.D. Frostig, E.E. Lieke, D.Y. Ts'o, A. Grinvald, Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. U. S. A. 87 (1990) 6082–6086] [7]. The origin of the third component is not yet clear but the component seems to be based on scattered light [H.U. Dodt, G. D'Arcangelo, E. Pestel, W. Zieglgansberger, The spread of excitation in neocortical columns visualized with infrared-dark field videomicroscopy, NeuroReport 7 (1996) 1553–1558; K. Holthoff, O.W. Witte, Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space, J. Neurosci. 16 (1996) 2740–2749; B.A. MacVicar, D. Hochman, Imaging of synaptically evoked intrinsic optical signals in hippocampal slices, J. Neurosci. 11 (1991) 1458–1469; L. Trachsel, H.U. Dodt, W. Zieglgansberger, The intrinsic optical signal evoked by chiasm stimulation in the rat suprachiasmatic nuclei exhibits GABAergic day–night variation, Eur. J. Neurosci. 8 (1996) 319–328] , , and . A spectral fitting method with three components is used for the analysis of intrinsic optical signal [M. Nemoto, Y. Nomura, C. Sato, M. Tamura, K. Houkin, I. Koyanagi, H. Abe, Analysis of optical signals evoked by peripheral nerve stimulation in rat somatosensory cortex: dynamic changes in hemoglobin concentration and oxygenation, J. Cereb. Blood Flow Metab. 19 (1999) 246–259] [17]. In order to validate the analysis, we need the knowledge on contribution of signal resulted from hemoglobin to total intrinsic optical signal. The exchange transfusion with fluorocarbon has the advantage that can change the spectral contribution of hemoglobin [M. Ferrari, M.A. Williams, D.A. Wilson, N.V. Thakor, R.J. Traystman, D.F. Hanley, Cat brain cytochrome-c oxidase redox changes induced by hypoxia after blood–fluorocarbon exchange transfusion, Am. J. Physiol. 269 (1995) H417–H424; A.L. Sylvia, C.A. Piantadosi, O2 dependence of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats, J. Cereb. Blood Flow Metab. 8 (1988) 163–172] and . Here we describe a new method of the reduction of hemoglobin signal from somatosensory evoked optical intrinsic signal in rat cortex by the combination of exchange transfusion with fluorocarbon and imaging system of thinned skull cranial window. The method allows for the study of the synaptically evoked changes in light scattering as well as fluorescence of calcium indicator or voltage-sensitive dye without absorption of hemoglobin.Themes: Cellular biologyTopics: Imaging techniques

  • [Show abstract] [Hide abstract]
    ABSTRACT: A phase III clinical study of a perfluorooctyl bromide emulsion demonstrated reduction and avoidance of donor blood transfusion in surgery. Novel fluorocarbon-in-water emulsions are being investigated, including emulsions highly stabilized by fluorocarbon–hydrocarbon diblocks and targeted emulsions for molecular imaging, diagnosis and drug delivery. Reverse water-in-fluorocarbon emulsions and microemulsions that have potential for pulmonary drug delivery are also being studied. Microemulsions with highly fluorinated components are being actively investigated, with applications in polymerization technology and as research tools.
    Current Opinion in Colloid & Interface Science 01/2003; · 6.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study is to investigate the reduced scattering coefficient of C6 glioma by the near-infrared (NIR) technique. Light scattering properties of C6 glioma in brain tissue is measured by NIR spectroscopy within the wavelength range from 700 to 850 nm. C6 gliomas were implanted in rats' right brains. The scattering properties of the left and right target corresponding to the position of normal and tumor tissue were measured by a bifurcated needle probe on postoperative days 3, 10, and 17. The results show that there was no significant difference in reduced scattering coefficient between left and right brain tissue at postoperative day 3, but significant decreases were found between left and right brains at postoperative days 10 and 17. This study proved our initial hypothesis that the NIR technique may have a potential for clinical application in brain muglioma diagnosis.
    Journal of Biomedical Optics 01/2008; 13(4):044003. · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Incorporating the wavelength dependence of the scattering effect into a simple linear multicomponent analysis of intrinsic optical signals, we have reexamined the change in the hemoglobin (Hb) concentration and the origins of intrinsic signals in somatosensory cortex evoked with electrical stimulation of the hind limb (5 Hz, 2 s) of anesthetized rat. The concept of the analysis was to separate the effect of light scattering involved in the observed optical signals into two factors, light attenuation and modification of Hb absorption as a result of the wavelength dependence of the optical path length. This dependency was experimentally assessed with a tissue-simulating phantom whose absorption spectra were nearly identical to those of cerebral tissue through a thinned skull window in vivo. Using those phantom spectra, we carried out a curve fitting of the reflection spectra from the rat somatosensory cortex activated with an electrical stimulation of hind limb (5 Hz, 2 s). Oxygenated Hb slightly decreased at 0.5-1.5 s after an onset of the stimulus followed by an increase, which peaked at 4 s. Deoxygenated Hb increased at 1.0-1.5 s followed by a large late decrease. We again confirmed an early increase in the concentration of deoxygenated Hb in the rat somatosensory cortex after stimulation of the hind limb.
    The Japanese Journal of Physiology 07/2002; 52(3):301-12. · 1.04 Impact Factor