Article

Synthesis and characterization of nanocrystalline thoria obtained from thermally decomposed thorium carbonate

Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India; Water and Steam Chemistry Laboratory, BARC Facilities, Kalpakkam 603 102, India
Journal of Nuclear Materials (Impact Factor: 2.02). 01/2002; DOI: 10.1016/S0022-3115(02)00816-4

ABSTRACT Nanocrystalline thoria was synthesized by temperature programmed decomposition of Th(CO3)2 in an evolved gas analysis mass spectrometer set-up. The structural and stoichiometric changes encountered in the decomposition pathway were studied by off-line thermogravimetry (TGA), X-ray diffraction and X-ray photoelectron spectroscopy (XPS). Accurate conversion temperature for transformation of Th(CO3)2→ThO2 was arrived from the XPS measurements. Fourier transform infrared (FT-IR) measurements were used to compare vibrational activities of nano and bulk polycrystalline thoria. Raman spectroscopic studies indicated optical phonon confinement effects in nanocrystalline thoria. High resolution transmission electron microscopic examination on starting material, intermediates and nanocrystalline final product were carried out for studying the microstructure in the nanometer scale.

1 Bookmark
 · 
114 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new N-containing ligand, 1,4,7,10-tetra-(4-nitrobenzyl)-1,4,7,10-tetraazacyclo-dodecane (L), was synthesized, and its structure was determined by 1H NMR, high resolution mass spectrometry and X-ray diffraction. L crystallized in the monoclinic system (P21/n space group; a = 7.7895(2) Å, b = 22.9592(5) Å, c = 9.9204(2) Å; α = 90.00°, β = 105.481(3)°, γ = 90.00°; Z = 2). Slope analysis and the continuous variation method demonstrated that 1:2 complexes between Th(IV) and L are formed; furthermore, the XPS analysis suggested that two oxygen atoms might be provided by two water molecules and that eight nitrogen atoms might be provided by two L molecules to form a ten-coordinate compound with Th(IV). The extraction equilibrium constant for the complex formation between Th(IV) and L was logK ex = 6.95 ± 0.15 (25 °C), and the Gibbs free energy, ΔG o (25 °C), of the 1:2 Th–L complex in dichloromethane was −39.56 kJ/mol. The L ligand in dichloromethane only slightly extracted Th(IV) from HNO3 solution at pH = 1–3; however, an extraction efficiency of E = 94.9 ± 0.3 % was observed at pH = 4.63. The selectivity of L for the Th(IV) cation over other cations (i.e., Cs(I), Sr(II), Y(III), La(III), Sm(III), Eu(III), U(VI), and 241Am(III)) was evaluated. Furthermore, the stripping experiments showed that the stripping agent (0.5 mol/L Na2CO3 + 0.1 mol/L EDTA) could provide an optimal condition for stripping thorium, and thorium recovery was up to 91.6 ± 0.1 %.
    Journal of Radioanalytical and Nuclear Chemistry 295(1). · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: If the medium surrounding a nano-grain does not support the vibrational wavenumbers of a material, the optical and acoustic phonons get confined within the grain of the nanostructured material. This leads to interesting changes in the vibrational spectrum of the nanostructured material as compared to that of the bulk. Absence of periodicity beyond the particle dimension relaxes the zone-centre optical phonon selection rule, causing the Raman spectrum to have contributions also from phonons away from the Brillouin-zone centre. Theoretical models and calculations suggest that the confinement results in asymmetric broadening and shift of the optical phonon Raman line, the magnitude of which depends on the widths of the corresponding phonon dispersion curves. This has been confirmed for zinc oxide nanoparticles. Microscopic lattice dynamical calculations of the phonon amplitude and Raman spectra using the bond-polarizability model suggest a power-law dependence of the peak-shift on the particle size. This article reviews recent results on the Raman spectroscopic investigations of optical phonon confinement in several nanocrystalline semiconductor and ceramic/dielectric materials, including those in selenium, cadmium sulphide, zinc oxide, thorium oxide, and nano-diamond. Resonance Raman scattering from confined optical phonons is also discussed. Copyright © 2007 John Wiley & Sons, Ltd.
    Journal of Raman Spectroscopy 04/2007; 38(6):604 - 617. · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Graphite platforms containing metal-based chemical modifiers and nitric acid solutions, individually and in combination, were heated using a typical temperature program for ETAAS; for some measurements, aluminium nitrate was also present as a matrix component. Changes in the graphite surface structure that occurred after heating the platform to various temperatures were evaluated using Raman spectrometry. The presence of thorium, zirconium, palladium or nitric acid resulted in an increase in the content of sp 3 -bonded carbon clusters on the platform surface. In addition, nitric acid affected the chemical modifier phases present, particularly for palladium. The surface alterations observed help explain the effect of the chemical modifiers on platform lifetime and the stabilization mechanism of the modifiers on analyte elements.
    Journal of Analytical Atomic Spectrometry 01/2009; 24:1044-1050. · 3.40 Impact Factor