Surface tensions and refractive indices of (tetrahydrofuran +n -alkanes) atT =298.15 K

Departamento de Fı́sica Aplicada, Facultad de Fı́sica, Universidad de Santiago, E-15706, Santiago de Compostela, Spain
The Journal of Chemical Thermodynamics (Impact Factor: 2.68). 07/1999; 31(7):931-942. DOI: 10.1006/jcht.1999.0517


The refractive indices n and surface tensions σ of liquid binary mixtures {xc-(CH2)4O + (1 − x)CH3(CH2)mCH3,m = (4 to 8)} were measured at T = 298.15 K over the whole concentration range. The densities ρ of {xc-(CH2)4O + (1 − x)CH3(CH2)8CH3} were also measured at this temperature. The data are discussed in terms of molecular interactions and the chain length of the n -alkane. The Lorentz–Lorenz, Dale–Gladstone, Eykman, Oster, Arago–Biot, and Newton equations were used to predict the excess molar volumes from the refractometric measurements, as well as a modified Eykman equation with a parameter obtained for each binary system from data for dn / dT , dρ / dT , and ρ for the pure components. The most accurate predictions were those of the Oster and parametrized Eykman equations. Surface tensions predicted from measured densities using the Sugden equation and the assumption of mole-wise additivity for parachor were more accurate (between 2 per cent and 7 per cent) than predictions based on refractive index obtained by combining the Sugden equation and the definition of molar refraction R and adopting the additional assumption of mole-wise additivity forR .

1 Follower
23 Reads
  • Source
    • "El estudio de propiedades volumétricas de sistemas binarios con líquidos iónicos tiene dos objetivos; proporcionar datos de densidad de mezcla, necesarios en cálculos de transferencia de masa y comprender las interacciones soluto-solvente entre líquidos iónicos y solventes moleculares; estas interacciones se estudian en términos de propiedades de mezcla como el volumen de exceso molar , que para una mezcla binaria se define como [18]: ∑ ( ) donde, es la densidad de la mezcla, , y es la densidad, peso molecular y fracción molar de los componentes 1 y 2 del sistema binario. La ecuación (1) indica que para calcular del volumen de exceso molar en un sistema binario se requiere determinar experimentalmente la densidad de la mezcla en todo el rango de fracción molar; las técnicas experimentales para determinar el índice de refracción de sistemas líquidos son relativamente más simples [19], aplicando la regla de mezclas es posible predecir el volumen de exceso molar desde índices de refracción de sistemas multicomponentes [20], [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: RESUMEN El volumen de exceso molar de 30 mezclas binarias que contienen líquidos iónicos de imidazolio con diferentes solventes moleculares: (metanol, etanol, 1-propanol, 2-propanol, acetona, 2-butanona, 2-pentanona, acetato de metilo, acetato de etilo, acetato de butilo, carbonato de dimetilo, carbonato de dietilo, nitrometano, 1,3-dicloropropano y etilenglicol), se predice desde datos de índice de refracción, usando 3 tipos de métodos acoplados con diferentes reglas de mezcla para el cálculo del índice de refracción: Lorentz-Lorenz, Dale-Gladstone, Eykman, Arago-Biot, Newton y Oster. En estos sistemas las interacciones moleculares y fuerzas intermoleculares durante la mezcla provocan desviaciones positivas o negativas del comportamiento ideal. Los resultados obtenidos son analizados en términos de la naturaleza del líquido iónico y solvente molecular. Palabras clave: Volumen de exceso molar, índice de refracción, predicción, líquido iónico, solvente molecular. ABSTRACT The excess molar volumes of 30 binary mixtures containing ionic liquids of imidazolium with different molecular solvents: (methanol, ethanol, propan-1-ol, propan-2-ol, acetone, 2-butanone, 2-pentanone, methyl acetate, ethyl acetate, butyl acetate, dimethyl carbonate, diethyl carbonate, nitromethane, 1,3-dichloropropane and ethylene glycol), were predicted from the refractive index data, using 3 types of methods coupled with several different mixing rules for refractive index calculations: Lorentz-Lorenz, Dale-Gladstone, Eykman, Arago-Biot, Newton and Oster. In these systems, molecular interactions and intermolecular forces during mixing produce positive or negative deviations from ideal behavior. The results are analyzed in terms of the nature of ionic liquid and molecular solvent.
  • Source
    • "II developed for iso-refractive mixtures (Nakata & Sakurai, 1987) (Eq. III), coupled with different mixing rules for the refractive indices: the Lorentz–Lorenz, Dale–Gladstone, Eykman, Arago–Biot, Newton, and the Oster (Piñeiro et al., 1999 "
    [Show abstract] [Hide abstract]
    ABSTRACT: The excess molar volumes of 51 binary mixtures containing diverse groups of organic compounds: alcohols (methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, and heptan-1-ol), (cyclo-) alkanes (hexane, heptane, octane, nonane, decane, undecane, dodecane, and cyclohexane), esters (diethyl carbonate and ethyl chloroacetate), aromatics (o-xylene, m-xylene, p-xylene, and ethylbenzene), ketones (acetone), and ethers (anisole), were predicted from the refractive index data, using three types of equations coupled with several different mixing rules for refractive index calculations: the Lorentz-Lorenz, Dale-Gladstone, Eykman, Arago-Biot, Newton, and the Oster. These systems were chosen since they belong to different classes of organic species forming molecular interactions and intermolecular forces during mixing resulting in positive or negative, smaller or larger deviations from ideal behaviour. The obtained results were analysed in terms of the applied equation and mixing rule, the nature of compounds of the mixtures and the influence of alkyl chain length of the alkane or alcohol molecule.
    Chemical Papers- Slovak Academy of Sciences 05/2008; 62(3):302-312. DOI:10.2478/s11696-008-0027-x · 1.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Refractive indices and surface tensions for the binary liquid mixtures {1,4-dioxane + hexane, heptane, octane, nonane, and decane} at the temperature 298.15 K and normal atmospheric pressure, have been determined as a function of mole fractions. The magnitude of these experimental quantities is discussed in terms of the nature and type of intermolecular interactions in binary mixtures. Refractive index data, together with dielectric permittivity and dipolar moment of pure liquids, were used to calculate the dielectric permittivity for the mixtures by using the Frölich equation.
    Journal of Chemical & Engineering Data 06/2000; 45(4). DOI:10.1021/je000038r · 2.04 Impact Factor
Show more