Mutation of juxtamembrane cysteines in the tetraspanin CD81 affects palmitoylation and alters interaction with other proteins at the cell surface

Molecular, Cellular and Developmental Biology Program, Kansas State University, Manhattan, KS 66506, USA; Division of Biology, Kansas State University, Manhattan, KS 66506, USA
Experimental Cell Research (Impact Factor: 3.37). 07/2009; DOI: 10.1016/j.yexcr.2009.03.013

ABSTRACT Palmitoylation of tetraspanins affects protein–protein interactions, suggesting a key role in the assembly of the tetraspanin web. Since palmitoylation occurs on intracellular cysteine residues, we examined whether mutating these residues in the human tetraspanin CD81 would affect the association of CD81 with other surface membrane proteins. Mutation of at least six of the eight juxtamembrane cysteines was required to completely eliminate detectable CD81 palmitoylation, indicating that several sites can be palmitoylated. Interestingly, these mutated proteins exhibited reduced cell surface detection by antibody compared to wild-type CD81, but this was not due to differences in the level of protein expression, trafficking to the cell surface, protein stability, or anti-CD81 antibody binding affinity. Instead, the mutant CD81 proteins appeared to be partially hidden from detection by anti-CD81 antibody, presumably due to altered interactions with other proteins at the cell surface. Associations with the known CD81-interacting proteins CD9 and EWI-2 were also impaired with the mutant CD81 proteins. Taken together, these findings indicate that mutation of juxtamembrane cysteines alters the interaction of CD81 with other proteins, either because of reduced palmitoylation, structural alterations in the mutant proteins, or a combination of both factors, and this affects the CD81 microenvironment on the cell surface.

  • [Show abstract] [Hide abstract]
    ABSTRACT: CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function.
    Biophysical journal. 07/2014; 107(1):100-13.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’s interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. Surface plasmon resonance detection was used to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.
    PLoS ONE 10/2014; 9(10):e111333. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Palmitoylation, the posttranslational thioester-linked modification of a 16-carbon saturated fatty acid onto the cysteine residue of a protein, has garnered considerable attention due to its implication in a multitude of disease states. The signature DHHC motif (Asp-His-His-Cys) identifies a family of protein acyltransferases (PATs) that catalyze the S-palmitoylation of target proteins via a two-step mechanism. In the first step, autopalmitoylation, palmitate is transferred from palmitoyl-CoA to the PAT, creating a palmitoyl:PAT intermediate and releasing reduced CoA. The palmitoyl moiety is then transferred to a protein substrate in the second step of the reaction. We have developed an in vitro, single-well, fluorescence-based enzyme assay that monitors the first step of the PAT reaction by coupling the production of reduced CoA to the reduction of NAD+ using the α-ketoglutarate dehydrogenase complex. This assay is suitable for determining PAT kinetic parameters, elucidating lipid donor specificity and measuring PAT inhibition by 2-bromopalmitate. Finally, it can be used for high-throughput screening (HTS) campaigns for modulators of protein palmitoylation.
    Analytical Biochemistry 09/2014; 460:1–8. · 2.31 Impact Factor