Article

Experimental study of the effect of temperature on ion cluster formation using ion mobility spectrometry

Aerosol Physics Laboratory, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
Atmospheric Research (Impact Factor: 2.42). 11/2008; DOI: 10.1016/j.atmosres.2007.12.003

ABSTRACT Ion mobility spectrometry offers a robust and effective technique to study ion clusters in ambient conditions. Here, we have experimentally studied the influence of temperature on the positive ion cluster formation of 2-propanol vapor in air, along with parallel measurements for n-butyl acetate vapor in air. For both of these low proton affinity compounds in the ppm concentration range, temperatures below 0 °C tend to favor formation of dimers and trimers. The measurements indicate that approximate estimations for the fractions of these n-mers (n > 1) in the ion spectra, can be obtained by classical theory for ion induced nucleation. Presence of natural background vapors however slightly blurs the data, especially for the fraction of monomers, so that accurate prediction of the fractions of n-mers in the spectra would require more accurate information on the gas composition. The findings concerning thermal behavior of ions help to understand better ion phenomena also in field conditions.

0 Bookmarks
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: An ion mobility spectrometer (IMS) was used to study gas phase compounds during nucleation and growth of secondary organic aerosols (SOA). In this study SOA particles were generated by oxidizing α-pinene with O(3) and OH in a 6 m(3) reaction chamber. Positive ion peaks with reduced mobilities of 1.59 cm(2)(Vs)(-1) and 1.05 cm(2)(Vs)(-1) were observed 7 min after α-pinene and ozone were added to the chamber. The detected compounds can be associated with low volatility oxidation products of α-pinene, which have been suggested to participate in new particle formation. This is the first time that IMS has been applied to laboratory studies of SOA formation. IMS was found suitable for continuous online monitoring of the SOA formation process, allowing for highly sensitive detection of gas phase species that are thought to initiate new particle formation.
    Environmental Science & Technology 11/2010; 44(23):8917-23. · 5.48 Impact Factor
  • International Journal for Ion Mobility Spectrometry 03/2012; 15(1):41-46.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, the observation of indoor air ion concentration at a rural site has been carried out for the first time. These indoor observations are compared with outdoor air ion concentration. Net charge can be introduced into the atmosphere by processes such as combustion, rainfall and ultraviolet radiation. As compared to indoors, average air ions of both the polarities at outdoors are higher. Moreover, the air ion concentrations, experience large fluctuations during daytime, as compared to nighttime values. Positive and negative air ion concentrations are lower and uniform throughout the night both for indoor and outdoor conditions. Pollution index is more or less unity for outdoors in all-the-time period, which is good for human health. Due to limited sources of air ions indoors, it is observed that pollution index decreases from 00:00–02:00 hours and minimum is reached during 12:00–14:00 hours for indoors. During 00:00–02:00 hours, the indoor pollution index is 1.55, which is very harmful to human health.
    Journal of Earth System Science 02/2013; 122(1). · 0.79 Impact Factor