Article

Evidence that the σ1 receptor is not directly coupled to G proteins

Neuroscience Program, The George Washington University Medical Center, Washington, DC 20037, USA; Department of Pharmacology, The George Washington University Medical Center, Washington, DC 20037, USA
European Journal of Pharmacology (Impact Factor: 2.59). 01/2000; DOI: 10.1016/S0014-2999(00)00774-3

ABSTRACT Sigma (σ) receptors have been implicated in psychosis, cognition, neuroprotection, and locomotion in the central nervous system. The signal transduction mechanisms for σ receptors have not been fully elucidated. In this study, we examined the possible coupling between σ1 receptors and heterotrimeric guanine nucleotide-binding proteins (G proteins) in rodent brain. In σ1 receptor-rich cerebellar membrane preparations, the competitive binding curves of two σ1 agonists, (+)pentazocine and 1S,2R-(−)-cis-N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)cyclohexylamine (BD737), were unaffected by the addition of 10 μM guanosine-5′-O-(γ-thio)-triphosphate (GTPγS). Neither (+)pentazocine (1–100 μM) nor BD737 (0.01–10 μM) stimulated GTPase activities significantly above basal levels in agonist-stimulated GTPase activity assays in cerebellar membranes. Furthermore, when using the method of agonist-stimulated [35S]GTPγS binding as assessed by autoradiography, we did not observe significant stimulation of [35S]GTPγS binding in rat brain sections by either (+)pentazocine or BD737. The above results demonstrate that the σ1 receptor is not likely be directly coupled to G proteins.

0 Bookmarks
 · 
45 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although sigma (sigma) receptors have been identified as an independent receptor family distinct from opioid and phencyclidine receptors, the physiological roles of these receptors are largely unknown. It is controversial whether there exist metabotropic sigma receptors that are coupled with heterotrimeric G proteins. In the present study, the stimulatory effects of sigma ligands on high-affinity GTPase activity and [35S]GTPgammaS binding were determined in the membranes prepared from rat cerebral cortex, hippocampus, and striatum. In either G protein activation assay, none of the sigma ligands examined had stimulatory effect in any brain regions, except for unambiguous concentration-dependent increase in [35S]GTPgammaS binding by (+)-3-(3-hydroxyphenyl)-N-(1-propyl) piperidine [(+)-3-PPP] in striatal membranes. However, the competition study clearly showed this response was mediated through dopamine D2-like receptors, but not sigma receptors. It is concluded that sigma receptors are not coupled to heterotrimeric G proteins, at least those of Gi/o type.
    Journal of Neural Transmission 08/2005; 112(7):873-83. · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sigma-1 receptors are atypical receptors with potentially two transmembrane domains. Antagonists require doses significantly higher than their published affinities to have biological effects. We have reassessed the binding characteristics of these ligands and found antagonists bind to high- and low-affinity states not distinguished by agonists. The affinities of sigma-1 receptor ligands was assessed using radioligand saturation and competition binding of [³H]-(+)-pentazocine to permeabilized MDA-MB-468 cells. This was compared with the effect of ligands on metabolic activity using an MTS-based assay and calcium signalling using cells loaded with the calcium dye, Fura-2. Sigma-1 receptor antagonists, but not agonists, show GTP- and suramin-sensitive high-affinity binding. Functional responses (calcium signalling and metabolic activity), while associated with sigma-1 receptor binding, required binding to an unidentified, low-affinity target. Sigma-1 receptors are coupled to G proteins. This interaction is only observed when analysing antagonist binding. The identity of the G protein remains to be resolved. The concept of agonist and antagonist at the sigma-1 receptor needs to be revisited.
    British Journal of Pharmacology 04/2011; 164(2b):772-80. · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
    Progress in Neurobiology 07/2003; 70(2):83-244. · 9.04 Impact Factor