Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid

Agricultural University of Athens, Department of Food Science and Technology, 75 Iera Odos, 11855 Athens, Greece; National Agricultural Research Foundation, Institute of Agricultural Machinery and Constructions, Laboratory of Edible Fungi, 61 Dimocratias street, 13561 Agii Anargyri, Athens, Greece
Industrial Crops and Products 01/2010; DOI: 10.1016/j.indcrop.2009.12.011

ABSTRACT Waste bio-diesel derived glycerol was used as the sole carbon source by higher fungi; two Lentinula edodes strains were flask cultured in carbon-limited conditions and displayed satisfactory growth in media presenting weak agitation, pH 4.0 and temperature 25 °C. Maximum biomass of 5.2 g/l was produced. Mycelia were synthesized, containing around 0.1 g of fat per g of biomass, with linoleic acid (Δ9,12C18:2) being the principal cellular fatty acid produced. Two Aspergillus niger strains were grown in nitrogen-limited flask cultures with constant nitrogen and two different initial glycerol concentrations into the medium. In 250-ml flask cultures, large-sized pellets were developed, in contrast with the trials performed in 2-l flasks. Nitrogen limitation led to oxalic acid secretion and intra-cellular lipid accumulation; in any case, sequential production of lipid and oxalic acid was observed. Initially, nitrogen limitation led to lipid accumulation. Thereafter, accumulated lipid was re-consumed and oxalic acid, in significant quantities, was secreted into the medium. In large-sized pellets, higher quantities of intra-cellular total lipid and lower quantities of oxalic acid were produced and vice versa. Maximum quantities of oxalic acid up to 20.5–21.5 g/l and lipid up to 3.1–3.5 g/l (corresponding to 0.41–0.57 g of fat per g of biomass) were produced. Lipid was mainly composed of oleic (Δ9C18:1) and linoleic (Δ9,12C18:2) acids.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biosynthetic potential of four basidiomycetes (Agrocybe aegerita, Flammulina velutipes, Ganoderma applanatum and Pleurotus pulmonarius) and one ascomycete (Morchella esculenta) was examined in regard to biomass, intracellular (endopolysaccharides and lipids) and extracellular (exopolysaccharides) compounds' production in liquid media with glucose as substrate, in static and agitated cultures. Exopolysaccharides' production presented significant negative correlation with biomass, endopolysaccharides and lipids, while biomass was positively related to the production of endopolysaccharides and lipids. Maximum values of biomass, endo- and exo-polysaccharides obtained were quite impressive: P. pulmonarius produced 22.5 g/L of biomass, A. aegerita 60.4 % (w/w) of endopolysaccharides and F. velutipes 1.2 g/L of exopolysaccharides. Polysaccharides and lipids synthesized at the early growth stages were subjected to degradation as the fermentation proceeded. Mycelial lipids of all strains were highly unsaturated, dominated by linoleic acid, whereas glucose was the main building block of endopolysaccharides. The ability of the examined mushroom fungi to synthesize in high quantities biomass and polysaccharides, products with biotechnological and medicinal interest, renders these fungi as potential candidates in sugar-based bio-refineries.
    Bioprocess and Biosystems Engineering 12/2013; · 1.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the first part of this review, the biochemistry of lipid accumulation in the oleaginous microorganisms is depicted. Lipid biosynthesis form sugars and related substrates is a secondary anabolic activity, conducted after essential nutrient (usually nitrogen) depletion in the medium. Due to this exhaustion, the carbon flow is directed towards the accumulation of intracellular citric acid that is used as acetyl-CoA donor in the cytoplasm. Acetyl-CoA generates cellular fatty acids and subsequently triacylglycerols. Lipid accumulation from hydrophobic substrates is a growth associated process, being independent from nitrogen exhaustion in the medium. Medium fatty acids are incorporated with various incorporation rates and are either dissimilated for growth needs or become “substrate” for intracellular biotransformations. “New” fatty acid profiles (in both extra- and intracellular lipids) that did not previously exist in the medium are likely to be produced. Oleaginous microorganisms consume their own storage lipids when their metabolic abilities cannot be saturated by the extracellular carbon source. Reserve lipid breakdown is independent from the type of the carbon source used for lipid accumulation. In most cases it is accompanied by lipid-free biomass production. Lipid mobilization is a specific process, as preferential degradation of the neutral lipid fractions is observed.
    European Journal of Lipid Science and Technology 06/2011; 113(8):1031 - 1051. · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biodiesel has emerged as a potential alternate renewable liquid fuel in the past two decades. Total annual production of biodiesel stands at 6.96 million tons and 11.2 million tons in USA and Europe, respectively. In other countries, Asia and Latin America, biodiesel production has increased at unprecedented rate. Despite this, the economy of biodiesel is not attractive. An obvious solution for boosting the economy of the biodiesel industry is to look for markets for side products of the transesterification process of biodiesel synthesis. The main by-product is glycerol. However, this glycerol is contaminated with alkali/acid catalyst and alcohol, and thus, is not useful for conventional applications such as in toothpaste, drugs, paints and cosmetics. Conversion of this glycerol to value-added product is a viable solution for effective and economic utilization, which would also generate additional revenue for the biodiesel industry. Intensive research has taken place in area of conversion of glycerol to numerous products. The conventional catalytic route of glycerol transformation employs prohibitively harsh conditions of temperature and pressure, and thus, has slim potential for large-scale implementation. In addition, the selectivity of the process is rather small with formation of many undesired side products. The bioconversion processes, on the other hand, are highly selective although with slower kinetics. In this review, we have given an assessment and overview of the literature on bioconversion of glycerol. We have assessed as many as 23 products from glycerol bioconversion, and have reviewed the literature in terms of microorganism used, mode of fermentation, type of fermentor, yield and productivity of the process and recovery/purification of the products. The metabolic pathway of conversion of glycerol to various products has been discussed. We have also pondered over economic and engineering issues of large-scale implementation of process and have outlined the constraints and limitations of the process. We hope that this review will be a useful source of information for biochemists, biotechnologists, microbiologists and chemical engineers working in the area of glycerol bioconversion.
    Critical Reviews in Biotechnology 08/2012; 32(3-0738-8551):235-262. · 5.10 Impact Factor


Available from
May 22, 2014