Dynamics of Cosmological Perturbations in Position Space

Physical Review D (Impact Factor: 4.86). 02/2002; 65(12). DOI: 10.1103/PhysRevD.65.123008
Source: arXiv

ABSTRACT We show that the linear dynamics of cosmological perturbations can be described by coupled wave equations, allowing their efficient numerical and, in certain limits, analytical integration directly in position space. The linear evolution of any perturbation can then be analyzed with the Green's function method. Prior to hydrogen recombination, assuming tight coupling between photons and baryons, neglecting neutrino perturbations, and taking isentropic (adiabatic) initial conditions, the obtained Green's functions for all metric, density, and velocity perturbations vanish beyond the acoustic horizon. A localized primordial cosmological perturbation expands as an acoustic wave of photon-baryon density perturbation with narrow spikes at its acoustic wavefronts. These spikes provide one of the main contributions to the cosmic microwave background radiation anisotropy on all experimentally accessible scales. The gravitational interaction between cold dark matter and baryons causes a dip in the observed temperature of the radiation at the center of the initial perturbation. We first model the radiation by a perfect fluid and then extend our analysis to account for finite photon mean free path. The resulting diffusive corrections smear the sharp features in the photon and baryon density Green's functions over the scale of Silk damping. Comment: 19 pages, 5 figures, matches the version to appear in Phys. Rev. D

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galaxy redshift surveys using optical telescopes have, in combination with other cosmological probes, enabled precision measurements of the nature of dark energy. We show that radio telescopes are rapidly becoming competitive with optical facilities in spectroscopic surveys of large numbers of galaxies. Two breakthroughs are driving this change. Firstly, individual radio telescopes are more efficient at mapping the sky thanks to the large field-of-view of new phased-array feeds. Secondly, ever more dishes can be correlated in a cost-effective manner with rapid increases in computing power. The next decade will see the coming of age of the radio wavelength as a cosmological probe as first the Pathfinders then, ultimately, the Square Kilometre Array is constructed. The latter will determine precise 3D positions for a billion galaxies, mapping the distribution of matter in the Universe over the last 12 billion years. This radio telescope will be able to constrain the equation of state of dark energy, and its potential evolution, to a precision rivalling that of future optical facilities such as DESI and Euclid.
    Annalen der Physik 08/2014; 526(7-8). DOI:10.1002/andp.201400059 · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a completely analytic treatment of cosmological fluctua-tions whose wavelength is small enough to come within the horizon well before the energy densities of matter and radiation become equal. This analysis yields a simple formula for the conventional transfer function T (k) at large wave number k, which agrees very well with computer calculations of T (k). It also yields an explicit formula for the microwave background multipole coefficient C ℓ at very large ℓ.
    The Astrophysical Journal 12/2002; 581(2):6-2. DOI:10.1086/344441 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpc < k < 0.2h/Mpc. Results from the LRG and main galaxy samples are consistent, with the former providing higher signal-to-noise. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. They provide a striking confirmation of the predicted large-scale LCDM power spectrum. Combining only SDSS LRG and WMAP data places robust constraints on many cosmological parameters that complement prior analyses of multiple data sets. The LRGs provide independent cross-checks on Om and the baryon fraction in good agreement with WMAP. Within the context of flat LCDM models, our LRG measurements complement WMAP by sharpening the constraints on the matter density, the neutrino density and the tensor amplitude by about a factor of two, giving Omega_m=0.24+-0.02 (1 sigma), sum m_nu < 0.9 eV (95%) and r<0.3 (95%). Baryon oscillations are clearly detected and provide a robust measurement of the comoving distance to the median survey redshift z=0.35 independent of curvature and dark energy properties. Within the LCDM framework, our power spectrum measurement improves the evidence for spatial flatness, sharpening the curvature constraint Omega_tot=1.05+-0.05 from WMAP alone to Omega_tot=1.003+-0.010. Assuming Omega_tot=1, the equation of state parameter is constrained to w=-0.94+-0.09, indicating the potential for more ambitious future LRG measurements to provide precision tests of the nature of dark energy. All these constraints are essentially independent of scales k>0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive published analyses where nonlinear modeling is crucial.


Available from