An ex vivo preparation of the intact mouse vomeronasal organ and accessory olfactory bulb

Department of Anatomy and Neurobiology, Washington University School of Medicine, Campus Box 8108, 660 S. Euclid Ave, Saint Louis, MO 63110, United States
Journal of Neuroscience Methods (Impact Factor: 2.05). 03/2009; 177(2):440-447. DOI: 10.1016/j.jneumeth.2008.11.013


The accessory olfactory system (AOS) in mammals detects and processes information from liquid-phase environmental odorants, including pheromones. The AOS carries out tasks such as individual recognition, learning, and decision-making with relatively few stages of neural processing; it thus represents an attractive system for investigating the neural circuits that carry out these functions. Progress in understanding the AOS has long been impeded by its relative inaccessibility to standard physiological approaches. In this report, we detail a novel dissection and tissue perfusion strategy that improves access to the accessory olfactory bulb (AOB) while maintaining afferent connections from sensory neurons in the vomeronasal organ (VNO). Mitral cells demonstrated spontaneous and evoked firing patterns consistent with recent in vivo reports. We assayed cell degradation in the AOB tissue using Fluoro-Jade C and found that the VNO and AOB glomerular, external plexiform, and mitral cell layers showed minimal signs of degeneration for up to 6 h. Whereas histology indicated some degeneration in the deep inhibitory granule cell layer over time, electrophysiological assays demonstrated intact inhibitory function on mitral cells. Pharmacological blockade of GABAA receptors with 3 M SR95531 (gabazine) resulted in increased evoked mitral cell activity. Furthermore, mitral cells displayed suppression of responses to preferred urine stimuli when preferred and non-preferred stimuli were mixed, an effect thought to involve functional laterally connected inhibition. These results demonstrate the utility of whole mount ex vivo preparations for studying sensory processing in the AOS, and suggest that similar strategies may improve experimental access to other difficult-to-study neural circuits.

Download full-text


Available from: Julian Philip Meeks, Jul 08, 2015
19 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mice, nonvolatile social cues are detected and analyzed by the accessory olfactory system (AOS). Here we provide a first view of information processing in the AOS with respect to individual chemical cues. 12 sulfated steroids, recently discovered mouse AOS ligands, caused widespread activity among vomeronasal sensory neurons (VSNs), yet VSN responses clustered into a small number of repeated functional patterns or processing streams. Downstream neurons in the accessory olfactory bulb (AOB) responded to these ligands with enhanced signal/noise compared to VSNs. Although the dendritic connectivity of AOB mitral cells suggests the capacity for broad integration, most sulfated steroid responses were well-modeled by linear excitatory drive from just one VSN processing stream. However, a substantial minority demonstrated multi-stream integration. Most VSN excitation patterns were also observed in the AOB, but excitation by estradiol sulfate processing streams was rare, suggesting AOB circuit organization is specific to the biological relevance of sensed cues.
    Nature Neuroscience 06/2010; 13(6):723-30. DOI:10.1038/nn.2546 · 16.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mouse accessory olfactory system (AOS) is a specialized sensory pathway for detecting nonvolatile social odors, pheromones, and kairomones. The first neural circuit in the AOS pathway, called the accessory olfactory bulb (AOB), plays an important role in establishing sex-typical behaviors such as territorial aggression and mating. This small (<1 mm(3)) circuit possesses the capacity to distinguish unique behavioral states, such as sex, strain, and stress from chemosensory cues in the secretions and excretions of conspecifics. While the compact organization of this system presents unique opportunities for recording from large portions of the circuit simultaneously, investigation of sensory processing in the AOB remains challenging, largely due to its experimentally disadvantageous location in the brain. Here, we demonstrate a multi-stage dissection that removes the intact AOB inside a single hemisphere of the anterior mouse skull, leaving connections to both the peripheral vomeronasal sensory neurons (VSNs) and local neuronal circuitry intact. The procedure exposes the AOB surface to direct visual inspection, facilitating electrophysiological and optical recordings from AOB circuit elements in the absence of anesthetics. Upon inserting a thin cannula into the vomeronasal organ (VNO), which houses the VSNs, one can directly expose the periphery to social odors and pheromones while recording downstream activity in the AOB. This procedure enables controlled inquiries into AOS information processing, which can shed light on mechanisms linking pheromone exposure to changes in behavior.
    Journal of Visualized Experiments 08/2014; DOI:10.3791/51813 · 1.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian accessory olfactory system extracts information about species, sex and individual identity from social odors, but its functional organization remains unclear. We imaged presynaptic Ca(2+) signals in vomeronasal inputs to the accessory olfactory bulb (AOB) during peripheral stimulation using light sheet microscopy. Urine- and steroid-responsive glomeruli densely innervated the anterior AOB. Glomerular activity maps for sexually mature female mouse urine overlapped maps for juvenile and/or gonadectomized urine of both sexes, whereas maps for sexually mature male urine were highly distinct. Further spatial analysis revealed a complicated organization involving selective juxtaposition and dispersal of functionally grouped glomerular classes. Glomeruli that were similarly tuned to urines were often closely associated, whereas more disparately tuned glomeruli were selectively dispersed. Maps to a panel of sulfated steroid odorants identified tightly juxtaposed groups that were disparately tuned and dispersed groups that were similarly tuned. These results reveal a modular, nonchemotopic spatial organization in the AOB.
    Nature Neuroscience 06/2014; 17(7). DOI:10.1038/nn.3738 · 16.10 Impact Factor
Show more